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Chapter 10

Contrapositive Proof

We now examine an alternative to direct proof called contrapositive proof. Like
direct proof, the technique of contrapositive proof is used for proving conditional
statements of the form “If P, then QQ.” Although it is possible to use direct proof
exclusively, there are occasions where contrapositive proof is easier.

10.1 Contrapositive Proof

To understand how contrapositive proof works, imagine that you need to prove a
proposition of the following form.

Proposition. If P, then Q.
This is a conditional statement of form P = ). Our goal is to show that it is true.

Now, in Section 3.6 we saw that P = @ is logically equivalent to =@ = —P. For
convenience, here is the truth table that confirms this.
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According to the table, statements P = @ and —Q = —P are different ways
of expressing exactly the same thing. The expression Q) = —P is called the
contrapositive form of P = Q.

1Do not confuse the words contrapositive and converse. Recall from Section 3.4 that the converse
of P = @ is the statement @ = P, which is not logically equivalent to P = Q.

255
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Since P = @ is logically equivalent to =@ = —P, it follows that to prove P = @
is true, it suffices to prove =Q) = —P is true. If we were to use direct proof to show
- = —P is true, we would assume —() is true use this to deduce that —P is true.
This in fact is the approach of contrapositive proof, summarized as follows.

Outline for Contrapositive Proof

Assumption 10.1. If P, then Q.

Proof. Suppose —Q.

Therefore —P. O

So the setup for contrapositive proof is very simple. The first line of the proof
is the sentence “Suppose Q is not true.” (Or something to that effect.) The last
line is the sentence “Therefore P is not true.” Between the first and last line we
use logic and definitions to transform the statement —@Q to the statement —P.

To illustrate this new technique, and to contrast it with direct proof, we now
prove a proposition in two ways: first with direct proof and then with contrapositive.

Proposition. Suppose z € Z. If Tz + 9 is even, then z is odd.

Proof. (Direct) Suppose 7z + 9 is even.

Thus 7x + 9 = 2a for some integer a.

Subtracting 6x + 9 from both sides, we get x = 2a — 6x — 9.

Thus z =2a—6x—9=2a—6x—10+1=2(a—3z—5)+ 1.

Consequently x = 2b+ 1, where b=a — 3z — 5 € Z.

Therefore z is odd. O

Here is a contrapositive proof of the same statement:

Proposition. Suppose z € Z. If 7Tz + 9 is even, then z is odd.

Proof. (Contrapositive) Suppose z is not odd.

Thus z is even, so z = 2a for some integer a.

Then 72 4+9="7(2a) +9=14a+8+1=2(Ta+4) + 1.

Therefore 7z + 9 = 2b + 1, where b is the integer 7a + 4.

Consequently 7x + 9 is odd.

Therefore 7x + 9 is not even. O

Though the proofs are of equal length, you may feel that the contrapositive
proof flowed more smoothly. This is because it is easier to transform information
about z into information about 7x + 9 than the other way around. For our next
example, consider the following proposition concerning an integer x:
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Proposition. If £2 — 6z + 5 is even, then z is odd.

Direct proof would be problematic. We would begin by assuming that z2—6x45
is even, so 2 —6x-+5 = 2a. Then we would need to transform this into = 2b+1 for
b € Z. But it is not quite clear how that could be done, for it would involve isolating
an x from the quadratic expression. However the proof becomes very simple if we
use contrapositive proof.

Proposition. Suppose z € Z. If 22 — 6x + 5 is even, then z is odd.

Proof. (Contrapositive) Suppose z is not odd.

Thus z is even, so x = 2a for some integer a.

So 2?2 —6x +5 = (20)2 —6(2a) +5 = 4a®> —12a+5 = 4a®> — 12a + 4+ 1 =
2(2a2% — 6a + 2) + 1.

Therefore 22 — 62 + 5 = 2b + 1, where b is the integer 2a% — 6a + 2.

Consequently 22 — 6z + 5 is odd.

Therefore 2 — 6x + 5 is not even. O

In summary, since  being not odd (=Q) resulted in 22 — 62 + 5 being not even
(=P), then 22 — 6x + 5 being even (P) means that z is odd (Q). Thus we have
proved P = @ by proving =) = —P. Here is another example:

Proposition. Suppose z,y € R. If 2 + yz? < 2% + zy?, then y < .

Proof. (Contrapositive) Suppose it is not true that y < x, so y > =.
Then y — x > 0. Multiply both sides of y — z > 0 by the positive value z2 + 3.
(y —2)(@® +y°) > 0(2® +¢?)
yr? 4+ — a3 —xy? >0
y? +yx? > 23 + ay?
Therefore 3% + ya? > 2% + 292, so it is not true that y* + yax? < 23 + zy?. O

Proving “If P, then @Q,” with the contrapositive approach necessarily involves
the negated statements —P and —@Q. In working with these we may have to use
the techniques for negating statements (e.g., DeMorgan’s laws) discussed in Section
5.4. We consider such an example next.

Proposition. Suppose z,y € Z. If 5t zy, then 5tz and 51 y.

Proof. (Contrapositive) Suppose it is not true that 5tz and 51 y.

By DeMorgan’s law, it is not true that 54z or it is not true that 51 y.

Therefore 5 | x or 5 | y. We consider these possibilities separately.

Case 1. Suppose 5 | z. Then 2 = 5a for some a € Z.

From this we get zy = 5(ay), and that means 5 | zy.

Case 2. Suppose 5 | y. Then y = 5a for some a € Z.

From this we get zy = 5(az), and that means 5 | zy.

The above cases show that 5 | 2y, so it is not true that 51 zy. O
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10.2 Congruence of Integers

This is a good time to introduce a new definition. It is not necessarily related
to contrapositive proof, but introducing it now ensures that we have a sufficient
variety of exercises to practice all our proof techniques on. This new definition
occurs in many branches of mathematics, and it will surely play a role in some of
your later courses. But our primary reason for introducing it is that it will give us
more practice in writing proofs.

Definition 10.1. Given integers a and b and an n € N, we say a and b are
congruent modulo n if n | (a — b). We express this as a = b (mod n). If @ and
b are not congruent modulo n, we write this as a Z b (mod n).

Example 10.1. Here are some examples:

(1) 9=1 (mod 4) because 4 | (9 —1).

(2) 6 =10 (mod 4) because 4 | (6 — 10).
(3) 14 #£ 8 (mod 4) because 4 1 (14 — 8).
(4) 20 =4 (mod 8) because 8| (20 — 4).
Q)

5) 17 = —4 (mod 3) because 3 | (17 — (—4)). “

In practical terms, a = b (mod n) means that a and b have the same remainder
when divided by n. For example, we saw above that 6 = 10 (mod 4) and indeed 6
and 10 both have remainder 2 when divided by 4. Also we saw 14 # 8 (mod 4), and
sure enough 14 has remainder 2 when divided by 4, while 8 has remainder 0.

To see that this is true in general, note that if ¢ and b both have the same
remainder 7 when divided by n, then a = kn + r and b = ¢n + r for some k,¢ € Z.
Then a—b = (kn+r)—(¢n+r) =n(k—¢). But a—b = n(k—¢) means n | (a—b), so
a =b (mod n). Conversely, Exercise 10.32 asks you to show that if a = b (mod n),
then a and b have the same remainder when divided by n.

We conclude this section with several proofs involving congruence of integers,
but you will also test your skills with other proofs in the exercises.

Proposition. Let a,b € Z and n € N. If a = b (mod n), then a? = b? (mod n).

Proof. We will use direct proof. Suppose a = b (mod n).

By definition of congruence of integers, this means n | (a — b).

Then by definition of divisibility, there is an integer ¢ for which a — b = nc.
Now multiply both sides of this equation by a + b.

a—b=nc
(a—b)(a+b) =ncla+b)
a® — b = ncla+b)

Since c(a + b) € Z, the above equation tells us n | (a? — b%).
According to Definition 10.1, this gives a = b? (mod n). O
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Let’s pause to consider this proposition’s meaning. It says a = b (mod n) implies
a’? = b? (mod n). In other words, it says that if integers @ and b have the same
remainder when divided by n, then a? and b? also have the same remainder when
divided by n. As an example of this, 6 and 10 have the same remainder (2) when
divided by n = 4, and their squares 36 and 100 also have the same remainder (0)
when divided by n = 4. The proposition promises this will happen for all a, b and n.
In our examples we tend to concentrate more on how to prove propositions than on
what the propositions mean. This is reasonable since our main goal is to learn how
to prove statements. But it is helpful to sometimes also think about the meaning
of what we prove.

Proposition. Let a,b,c € Z and n € N. If a = b (mod n), then ac = bc (mod n).

Proof. We employ direct proof. Suppose a = b (mod n). By Definition 10.1, it
follows that n | (a — b). Therefore, by definition of divisibility, there exists an
integer k for which a — b = nk. Multiply both sides of this equation by ¢ to get
ac — be = nke. Thus ac — be = n(ke) where ke € Z, which means n | (ac — be). By
Definition 10.1, we have ac = be (mod n). O

Contrapositive proof seems to be the best approach in the next example, since
it will eliminate the symbols t and #.

Proposition. Suppose a,b € Z and n € N. If 12a # 12b (mod n), then n { 12.

Proof. (Contrapositive) Suppose n | 12, so 12 = nc for some ¢ € Z. Then:
12 = nc
12(a — b) = nc(a — b)
12a — 12b = n(ca — cb)

Since ca — ¢b € Z, the equation 12a — 12b = n(ca — ¢b) implies n | (12a — 12b). This
in turn means 12a = 12b (mod n). O

10.3 Mathematical Writing

Now that we have begun writing proofs, it is a good time to contemplate the craft
of writing. Unlike logic and mathematics, where there is a clear-cut distinction
between what is right or wrong, the difference between good and bad writing is
sometimes a matter of opinion. But there are some standard guidelines that will
make your writing clearer. Some are listed below.

1. Begin each sentence with a word, not a mathematical symbol. The
reason is that sentences begin with capital letters, but mathematical symbols
are case sensitive. Because z and X can have entirely different meanings,
putting such symbols at the beginning of a sentence can lead to ambigu-
ity. Here are some examples of bad usage (marked with x) and good usage
(marked with v').
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A is a subset of B. X
The set A is a subset of B. v
z is an integer, so 2z + 5 is an integer. X
Because x is an integer, 2z + 5 is an integer. v
22 — z + 2 = 0 has two solutions. x
X? — x + 2 =0 has two solutions. x (and silly too)
The equation 2 — 2 + 2 = 0 has two solutions. v

End each sentence with a period, even when the sentence ends with a
mathematical symbol or expression.

Euler proved that Z i H 1— L 8
k=1 pEP P’

Euler proved that i i = H ! v
1% ks 11— =

-
k=1 peEP pe

Mathematical statements (equations, etc.) are like English phrases that hap-

pen to contain special symbols, so use normal punctuation.

Separate mathematical symbols and expressions with words. Not
doing this can cause confusion by making distinct expressions appear to merge
into one. Compare the clarity of the following examples.

Because 22 —1=0,z=1or z = —1. X
Because 2 — 1 = 0, it follows that z =1 or z = —1. v
Unlike AU B, AN B equals 0. X
Unlike AU B, the set AN B equals (). v
Avoid misuse of symbols. Symbols such as =, <, C, €, etc., are not

words. While it is appropriate to use them in mathematical expressions,
they are out of place in other contexts.

Since the two sets are =, one is a subset of the other. X
Since the two sets are equal, one is a subset of the other. v
The empty set is a C of every set. X
The empty set is a subset of every set. v
Since a is odd and z odd = z? odd, a? is odd. X

Since a is odd and any odd number squared is odd, then a? is odd. '

5. Avoid using unnecessary symbols. Mathematics is confusing enough

without them. Don’t muddy the water even more.

X

No set X has negative cardinality.
No set has negative cardinality. v
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Use the first person plural. In mathematical writing, it is common to

” rather than “I,” “you” or “me.” It is as if

use the words “we” and “us
the reader and writer are having a conversation, with the writer guiding the

reader through the details of the proof.

Use the active voice. This is just a suggestion, but the active voice makes
your writing more lively.

The value x = 3 is obtained through the division of both sides by 5. x
Dividing both sides by 5, we get the value z = 3. v

Explain each new symbol. In writing a proof, you must explain the
meaning of every new symbol you introduce. Failure to do this can lead
to ambiguity, misunderstanding and mistakes. For example, consider the
following two possibilities for a sentence in a proof, where a and b have been
introduced on a previous line.

Since a | b, it follows that b = ac. X
Since a | b, it follows that b = ac for some integer c. v

If you use the first form, then a reader who has been carefully following your
proof may momentarily scan backwards looking for where the ¢ entered into
the picture, not realizing at first that it came from the definition of divides.

Watch out for “it.” The pronoun “it” can cause confusion when it is
unclear what it refers to. If there is any possibility of confusion, you should
avoid the word “it.” Here is an example:

Since X C Y, and 0 < | X]|, we see that it is not empty. X
Is “it” X or Y7 Either one would make sense, but which do we mean?

Since X C Y, and 0 < | X]|, we see that Y is not empty. v

Since, because, as, for, so. In proofs, it is common to use these words as
conjunctions joining two statements, and meaning that one statement is true
and as a consequence the other true. The following statements all mean that
P is true (or assumed to be true) and as a consequence @ is true also.

Q since P @ because P Q,as P Q, for P P,so @
Since P, @ Because P, Q as P, Q

Notice that the meaning of these constructions is different from that of “If
P, then @Q,” for they are asserting not only that P implies @), but also that
P is true. Exercise care in using them. It must be the case that P and @) are
both statements and that @ really does follow from P.

X

r €N, s0Z
reN,soxeZ v
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11. Thus, hence, therefore consequently. These adverbs precede a state-
ment that follows logically from previous sentences or clauses. Be sure that
a statement follows them.

Therefore 2k + 1. X
Therefore a = 2k + 1. v

12. Clarity is the gold standard of mathematical writing. If breaking a
rule makes your writing clearer, then break the rule.

Your mathematical writing will evolve with practice usage. One of the best
ways to develop a good mathematical writing style is to read other people’s proofs.
Adopt what works and avoid what doesn’t.

10.4 Case Study: The Euclidean Algorithm

Proofs and algorithms intersect in various ways. As we will see later in this book, one
can prove that a given algorithm works correctly. In another direction, propositions
and theorems that have been proved may be used in algorithms. This section
explores an example of such an algorithm — the famous Euclidean algorithm for
computing the greatest common divisor of two numbers.

This algorithm is named after Euclid, who recorded it more than 2000 years ago
(although it is unlikely that he himself discovered it). It is based on the following
proposition.

Proposition. If a and b are integers, then ged(a,b) = ged(a — b, b).

Proof. (Direct) Suppose a,b € Z. We will first prove ged(a,b) < ged(a—b,b), then
ged(a, b) > ged(a — b, b). Together these will imply ged(a,b) = ged(a — b, b).

So let’s prove ged(a,b) < ged(a — b,b). Put d = ged(a,b). As d is a divisor
of both a and b, we have a = dx and b = dy for some integers x and y. Then
a—b=dx—dy = d(z—y), which means d divides a — b. Thus d is divisor of both
a — b and b. But it can’t be greater than the greatest common divisor of a — b and
b, which is to say ged(a,b) = d < ged(a — b, b).

Next let e = ged(a — b,b). Then e divides both a — b and b, so a — b = ex and
b = ey for integers = and y. Then a = (a —b) + b = ex + ey = e(z + y), so now
we see that e is a divisor of both a and b. But it is not more than their greatest
common divisor, that is, ged(a — b,b) = e < ged(a, b).

The previous two paragraphs show ged(a, b) = ged(a — b,b). O

This proposition means that if we need to compute ged(a,b), then we will get
the same answer by computing ged(a — b, b), which might be easier, as it involves
smaller numbers.
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For a concrete example, suppose we wanted to compute gecd(30,12).
(Pretend for the moment that you don’t see what the answer will be.) The
proposition says ged(30,12) = ged(30 — 12,12) = ged(18,12), so we have reduced
our problem to that of finding gcd(18,12). For this, we can use the proposi-
tion again to get ged(18,12) = ged(18 — 12,12) = ged(6,12). Using it a third
time would give the negative value 6 — 12, but we can interchange the numbers
to get ged(6,12) = ged(12,6), and the proposition applied twice to this yields
ged(12,6) = ged(12 — 6,6) = ged(6,6) = ged(6 — 6,6) = ged(0,6) = 6. (Recall
ged(0,6) = 6, as every integer is a divisor of 0, but the greatest divisor of 6 is 6.
Similarly, ged(0,b) = b when b # 0.) Multiple applications of the proposition have
given ged(30,12) = 6.

Let’s compute ged(310,90) this way. We begin by continually subtracting 90
from 310 until getting ged(40,90). At that point 40 — 90 would be negative. So
we swap the order of the numbers to get ged(90,40), and continue the pattern,
subtracting multiples of 40 from 90, as follows.

ged(310,90)
= ged(220,90)
— gcd(130,90) keep subtracting 90 from number on left
= ged( 40,90)
swap numbers
= ged(90,40)
= ged(50,40) keep subtracting 40 from number on left
= ged( 10, 40)
swap numbers
= ged (40, 10)
= ged(30,10)
= ged(20, 10) keep subtracting 10 from number on left
= ged(10,10)
= ged( 0,10)
=10 <— This is ged (310, 90).

Eventually we get down to ged(0,10) = 10, and stop. Thus ged(310,90) = 10.

The Euclidean algorithm executes this exact pattern to compute ged(a,b). It
decrements a by b until a < b, then swaps a and b, and continues in this pattern
until @ = 0, at which point it is down to ged(0,b) = b. (This new b is smaller than
its original value.) Here it is.
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Algorithm 12: Euclidean Algorithm
Input: Two positive integers a and b.
Output: ged(a,b)

begin
while a # 0 do
if a < b then
c:=a
a:=0bp.iiiii.. swap a and b, so now a > b
b:=c
end
while a > b do
a:=a—b......... keep subtracting b from a until a < b
end
end
output b
end

For pedagogical honesty we point out that the Euclidean algorithm is not used
in a substantial way for the remainder of the book, though it is a good case study
in some important ideas. We consider one of those ideas now: the idea that we can
prove that an algorithm terminates (i.e., it does not go into an infinite loop).

Proposition. If its input numbers a, b are positive, then the Euclidean algorithm
terminates.

Proof. (Direct) Suppose a and b are positive. As the algorithm starts, the main
while loop begins its first iteration, because a # 0.

Let’s trace the first iteration of this loop. As it begins, if a < b then a and b are
interchanged. Regardless, we have a > b after the if command. Then, in the second
(inner) while loop begins and continually decrements a by b as long as a > b. As
a > b, the value a := a — b that is assigned to a is never negative. Thus, at the end
of the first iteration we have 0 < a < b.

If a = 0 there are no further iterations, and the algorithm finishes. Otherwise in
the second iteration a and b are swapped because a < b. This decreases the value of
b, and makes a > b. Then the inner while loop decreases the value of a until a < b.
But also 0 < a because the assignment a := a — b is only performed if a > b. Thus
after the second iteration both @ and b have decreased and 0 < a < b.

This pattern continues in all further iterations. The iteration begins with 0 <
a < b. Then a and b are swapped, decreasing the value of b. Then a is decreased
until 0 < a < b.

So each iteration after the first decreases both of the integers a and b, resulting
in 0 < a < b. Thus after a finite number of iterations we must reach a = 0, at which
point the algorithm terminates. O
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Notice that Euclidean algorithm does its job with just one arithmetic operation
— subtraction. Given that subtraction is an easy operation, the Euclidean algorithm
is very straightforward, efficient and fast, especially compared to other methods of
computing greatest common divisors.

For instance, you are probably familiar with the technique of finding ged(a, b)
by comparing the prime factorizations of @ and b. Given, say, 310 and 90, we prime
factor them as

310=2-5-31 and 90 =2-3-5.
The common prime factors are 2 and 5, and so ged(310,90) = 2-5 = 10. If we
were going to write a ged algorithm that took this approach, it would have to find
the prime factors of each number, compare them to each other, collect the common
ones and multiply. Such an algorithm would be nowhere as simple as the Euclidean
algorithm.

We close with one final remark. Look at the inner while loop in the Euclidean
algorithm. It shares a striking resemblance to part of the division algorithm on

page 215.
while a > b do
a:=a—>
end

Before the while loop starts, we have a = ¢b + v with 0 < r < b, that is, b
goes into a, g times with remainder r. When the while loop finishes, the ¢ b’s have
been subtracted from a, and a has been replaced with r. In some versions of the
Euclidean algorithm (in other texts), this while loop is replaced with the command

T where a = ¢gb + r, by the division algorithm.

We have opted to code the computation of r directly into the Euclidean algorithm.
See Exercise 10.31 below for a proposition leading to the alternate form of the
Fuclidean algorithm.

Exercises for Chapter 10

A. Use the method of contrapositive proof to prove the following statements. (In each
case you should also think about how a direct proof would work. You will find in
most cases that contrapositive is easier.)

1. Suppose n € Z. If n? is even, then n is even.

2. Suppose n € Z. If n? is odd, then n is odd.

3. Suppose a,b € Z. If a*(b® — 2b) is odd, then a and b are odd.
Suppose a, b, c € Z. If a does not divide be, then a does not divide b.
Suppose x € R. If 2% + 52 < 0 then z < 0.

Suppose z € R. If 2* —z > 0 then 2 > —1.

N e ss

Suppose a,b € Z. If both ab and a + b are even, then both a and b are even.
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Suppose z € R. If 2° — 4z* + 32® — 22 + 32 — 4 > 0, then z > 0.
9. Suppose n € Z. If 3{n?, then 3¢ n.
10. Suppose z,y,z € Z and z #0. If z{yz, then zty and z { 2.
11. Suppose z,y € Z. If 22(y + 3) is even, then z is even or y is odd.
12. Suppose a € Z. If a? is not divisible by 4, then a is odd.
13. Suppose z € R. If 2° + 72° + 52 > 2* + 2® + 8, then = > 0.

B. Prove the following statements using either direct or contrapositive proof. Some-
times one approach will be much easier than the other.

14. If a,b € Z and a and b have the same parity, then 3a + 7 and 7b — 4 do not.
15. Suppose z € Z. If 2° — 1 is even, then z is odd.

16. Suppose x € Z. If  + y is even, then x and y have the same parity.

17. If nis odd, then 8 | (n* — 1).

18. For any a,b € Z, it follows that (a + b)® = a® + b* (mod 3).

Il
S

19. Let a,b € Zand n € N. If @ = b (mod n) and a = ¢ (mod n), then ¢
(mod n).

20. Ifa€Zand a =1 (mod 5), then a*> = 1 (mod 5).
21. Let a,b€ Z andn € N. If ¢ = b (mod n), then a® = b (mod n)

22. Let a € Z, n € N. If a has remainder r when divided by n, then a =
r (mod n).

23. Let a,b,c € Z and n € N. If a = b (mod n), then ca = ¢b (mod n).
24. If a =b (mod n) and ¢ = d (mod n), then ac = bd (mod n).
25. If n € N and 2" — 1 is prime, then n is prime.

26. If n = 2¥ — 1 for k € N, then every entry in Row n of Pascal’s Triangle is
odd.

27. If a=0 (mod 4) or a =1 (mod 4), then (§) is even.
28. Ifn € Z, then 4 { (n* — 3).

29. Write a recursive procedure to compute ged(a, b). (This is the only exercise
in this section that is not a proof.)

30. If a = b (mod n), then ged(a,n) = ged(b,n).

31. Suppose the division algorithm applied to a and b yields a = gb + r. Then
ged(a, b) = ged(r, b).

32. If a = b (mod n), then a and b have the same remainder when divided by n.
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Solutions for Chapter 10

1.

Proposition Suppose n € Z. If n? is even, then n is even.

Proof. (Contrapositive) Suppose n is not even. Then n is odd, so n = 2a + 1 for
some integer a, by definition of an odd number. Thus n? = (2a+1)? = 4a*+4a+1 =
2(2a® 4 2a) 4+ 1. Consequently n? = 2b 4+ 1, where b is the integer 2a* + 2a, so n?
is odd. Therefore n? is not even. O

Proposition Suppose a,b € Z. If a?(b? — 2b) is odd, then a and b are odd.

Proof. (Contrapositive) Suppose it is not the case that a and b are odd. Then,
by DeMorgan’s law, at least one of a and b is even. Let us look at these cases
separately.

Case 1. Suppose a is even. Then a = 2c¢ for some integer c. Thus a?(b* — 2b)
= (2¢)2(b* — 2b) = 2(2c*(b? — 2b)), which is even.

Case 2. Suppose b is even. Then b = 2¢ for some integer c¢. Thus a*(b® — 2b)
=a?((2¢)? — 2(2¢)) = 2(a*(2¢* — 2¢)), which is even.

(A third case involving a and b both even is unnecessary, for either of the two cases
above cover this case.) Thus in either case a?(b* — 2b) is even, so it is not odd. [

Proposition Suppose z € R. If 22 4+ 5z < 0 then = < 0.

Proof. (Contrapositive) Suppose it is not the case that z < 0, so & > 0. Then
neither z2 nor 5z is negative, so 22452 > 0. Thus it is not true that 245z < 0. O

Proposition Suppose a,b € Z. If both ab and a + b are even, then both a and b
are even.

Proof. (Contrapositive) Suppose it is not the case that both a and b are even.
Then at least one of them is odd. There are three cases to consider.

Case 1. Suppose a is even and b is odd. Then there are integers ¢ and d for which
a =2cand b= 2d+1. Then ab = 2¢(2d+1), which is even; and a+b = 2c+2d+1 =
2(c+d) + 1, which is odd. Thus it is not the case that both ab and a + b are even.
Case 2. Suppose a is odd and b is even. Then there are integers ¢ and d for which
a=2c+1and b =2d. Then ab = (2¢ + 1)(2d) = 2(d(2¢ + 1)), which is even; and
a+b=2c+1+2d=2(c+d)+1, which is odd. Thus it is not the case that both
ab and a + b are even.

Case 3. Suppose a is odd and b is odd. Then there are integers ¢ and d for which
a=2c+1and b =2d+ 1. Then ab = (2c+1)(2d+ 1) = ded+2c+2d+ 1 =
2(2cd+ ¢+ d) + 1, which is odd; and a +b=2c+ 14 2d + 1 = 2(c+ d + 1), which
is even. Thus it is not the case that both ab and a + b are even.

These cases show that it is not the case that ab and a + b are both even. (Note
that unlike Exercise 3 above, we really did need all three cases here, for each case
involved specific parities for both a and b.) O

Proposition Suppose n € Z. If 3{n?, then 31 n.

Proof. (Contrapositive) Suppose it is not the case that 3 { n, so 3 | n. This
means that n = 3a for some integer a. Consequently n? = 9a?, from which we get
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n? = 3(3a?). This shows that there is an integer b = 3a* for which n® = 3b, which
means 3 | n?. Therefore it is not the case that 3 { n?. O

Proposition Suppose z,y € Z. If 2%(y + 3) is even, then x is even or y is odd.

Proof. (Contrapositive) Suppose it is not the case that x is even or y is odd.
Using DeMorgan’s law, this means z is not even and y is not odd, which is to say
z is odd and y is even. Thus there are integers a and b for which x = 2a + 1 and
y = 2b. Consequently z2(y + 3) = (2a + 1)%(2b + 3) = (4a* 4 4a + 1)(2b + 3) =
8a’b+ 8ab + 2b+ 12a® + 12a + 3 = 8a’b+ 8ab+2b+ 12a* + 12a + 2+ 1 =

2(4a®b + 4ab + b + 6a® + 6a + 1) + 1. This shows z?(y +3) = 2c + 1 for ¢ =
4a®b + 4ab + b+ 6a® + 6a + 1 € Z. Consequently, 2*(y + 3) is not even. O

Proposition Suppose = € R. If 2° + 7% + 52 > 2* + 22 + 8, then z > 0.

Proof. (Contrapositive) Suppose it is not true that x > 0. Then z < 0, that
is  is negative. Consequently, the expressions z°, 7z and 5z are all negative
(note the odd powers) so x® + 72 + 5z < 0. Similarly the terms z*, #*, and 8
are all positive (note the even powers), so 0 < z? 4+ 2% + 8. From this we get
x® 4+ 72 + 5z < 2* 4+ 2% + 8, so it is not true that 2° + 72 + 52 > z* + 22 +8. O

Proposition Suppose x € Z. If 2° — 1 is even, then z is odd.

Proof. (Contrapositive) Suppose z is not odd. Thus z is even, so x = 2a for some
integer a. Then 2 —1 = (2a)> —1 =8a®* -1 =80 —2+1 = 2(4a® — 1) + 1.
Therefore 2 —1 =2b+ 1 where b=4a®> — 1 € Z, so 2® — 1 is odd. Thus 2 — 1 is
not even. O

Proposition If n is odd, then 8 | (n? — 1).

Proof. (Direct) Suppose n is odd, so n = 2a+1 for some integer a. Then n?—1=
(2a+1)® —1 = 4a® +4a = 4(a® +a) = 4a(a+1). So far we have n® — 1 = 4a(a+1),
but we want a factor of 8, not 4. But notice that one of a or a+ 1 must be even, so
a(a+1) is even and hence a(a + 1) = 2c for some integer ¢. Now we have n® — 1 =
4a(a+ 1) = 4(2¢) = 8c. But n? — 1 = 8c means 8 | (n® — 1). O

Proposition Let a,b € Z and n € N. If a = b (mod n) and a = ¢ (mod n), then
c¢=b (mod n).

Proof. (Direct) Suppose a =b (mod n) and a = ¢ (mod n).

This means n | (a —b) and n | (a — ¢).

Thus there are integers d and e for which a — b = nd and a — ¢ = ne.

Subtracting the second equation from the first gives ¢ — b = nd — ne.

Thus ¢ —b=n(d —e), son | (c—b) by definition of divisibility.

Therefore ¢ = b (mod n) by definition of congruence modulo n. O

Proposition Let a,b€ Z and n € N. If @ = b (mod n), then a® = b (mod n).



July 13, 2023 15:32

23.

25.

27.

29.

31.

ws-book961x669 Discrete Math Elements Alpha page 269

Contrapositive Proof 269

Proof. (Direct) Suppose a = b (mod n). This means n | (a — b), so there is an
integer ¢ for which a — b = nc. Then:

a—b=mnc
(a — b)(a® + ab+ %) = nc(a® + ab + b*)
a® + a’b + ab® — ba® — ab® — b> = nc(a® + ab + b°)
a® — b® = ne(a® + ab + b?).

Since a® +ab+b* € Z, the equation a® —b* = nc(a® + ab+b*) implies n | (a® —b?),
and therefore a® = v* (mod n).

Proposition Let a,b,c € Z and n € N. If a = b (mod n), then ca = ¢b (mod n).

Proof. (Direct) Suppose a = b (mod n). This means n | (a — b), so there is an
integer d for which a —b = nd. Multiply both sides of this by ¢ to get ac—bc = ndc.
Consequently, there is an integer e = dc for which ac —bc = ne, son | (ac—bc) and
consequently ac = bc (mod n).

If n € N and 2™ — 1 is prime, then n is prime.

Proof. Assume n is not prime. Write n = ab for some a,b > 1. Then 2" —1 = 290 —
1= (2"—1) (2% 7P 4290720 4 220=3b 1 ... 4 2%079%)  Hence 2" — 1 is composite. [
If a=0 (mod 4) or a =1 (mod 4) then () is even.

Proof. We prove this directly. Assume a =0 (mod 4). Then (3) = @ Since
a = 4k for some k € N, we have (3) = % = 2k(4k — 1). Hence (3) is even.

Now assume a = 1 (mod 4). Then a = 4k + 1 for some k € N. Hence (3) =

w = 2k(4k + 1). Hence, () is even. This proves the result. O

Write a recursive procedure to compute ged(a, b).

The following procedure is a recursive version of the Euclidean algorithm.

Procedure Euclidean(a, b)

begin
if a < b then
c:=a
a:=b
b:=c
end
if a = 0 then
| return b
else
| return Euclidean(a — b,b)
end

end

Suppose the division algorithm applied to a and b yields a = gb+r. Then ged(a, b) =
ged(r, b).
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Proof. Suppose a = gb+r. Let d = ged(a, b), so d is a common divisor of a and b;
thus @ = dz and b = dy for some integers  and y. Then de = a = ¢b+r = qdy +,
hence dz = qdy +r, and so r = dz — qdy = d(z — qy). Thus d is a divisor of r (and
also of b), so ged(a,b) = d < ged(r, b).

On the other hand, let e = ged(r, b), so r = ex and b = ey for some integers = and
y. Then a = gb+r = gey + ex = e(qy + ). Hence e is a divisor of a (and of course
also of b) so ged(r,b) = e < ged(a, b).

We’ve now shown ged(a,b) < ged(r,b) and ged(r,b) < ged(a,b), so ged(r,b) =
ged(a, b). O



