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Chapter 11

Proof by Contradiction

We now explore a third method of proof: proof by contradiction. This method
is not limited to proving just conditional statements—it can be used to prove any
kind of statement whatsoever. The basic idea is to assume that the statement we
want to prove is false, and then show that this assumption leads to nonsense. We
are then led to conclude that we were wrong to assume the statement was false, so
the statement must be true. As an example, consider the following proposition and
its proof.

Proposition. If a,b € Z, then a® — 4b # 2.

Proof. Suppose this proposition is false.
This conditional statement being false means there exist numbers a and b for which
a,b € Z is true, but a® — 4b # 2 is false.

In other words, there exist integers a,b € Z for which

From this equation we get a? = 4b + 2 = 2(2b+ 1), so a? is even.

Because a2

is even, it follows that a is even, so a = 2¢ for some integer c.

Now plug a = 2¢ back into the boxed equation to get (2¢)? — 4b = 2,

so 4¢? — 4b = 2. Dividing by 2, we get 2¢> — 2b = 1.

Therefore 1 = 2(c? — b), and because ¢? — b € Z, it follows that 1 is even.

We know 1 is not even, so something went wrong.

But all the logic after the first line of the proof is correct, so it must be that the
first line was incorrect. In other words, we were wrong to assume the proposition

was false. Thus the proposition is true. O

You may be a bit suspicious of this line of reasoning, but in the next section
we will see that it is logically sound. For now, notice that at the end of the proof
we deduced that 1 is even, which conflicts with our knowledge that 1 is odd. In
essence, we have obtained the statement (1 is odd)A—(1 is odd), which has the form
C N —C. Notice that no matter what statement C' is, and whether or not it is true,
the statement C' A —C' is false. A statement—Ilike this one—that cannot be true is
called a contradiction. Contradictions play a key role in our new technique.

271
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11.1 Proving Statements with Contradiction

Let’s now see why the proof on the previous page is logically valid. In that proof
we needed to show that a statement P : (a,b € Z) = (a? — 4b # 2) was true. The
proof began with the assumption that P was false, that is that =P was true, and
from this we deduced C' A =C'. In other words we proved that =P being true forces
C A =C to be true, and this means that we proved that the conditional statement
(=P) = (C A=C) is true. To see that this is the same as proving P is true, look
at the following truth table for (-=P) = (C A —=C). Notice that the columns for
P and (=P) = (C A —C) are exactly the same, so P is logically equivalent to
(=P)= (C AN-C).

[P C -P[[CA-C[(=P)=(C r-0O)]
T T F|[F T
T F F |F T
F T T|F F
F F T |F F

Therefore to prove a statement P, it suffices to instead prove the conditional state-
ment (—-P) = (C A -C). This can be done with direct proof: Assume —P and
deduce C' A —~C'. Here is the outline:

Outline for Proof by Contradiction

Assumption 11.1. P.

Proof. Suppose —P.

Therefore C' A =C. O

One slightly unsettling feature of this method is that we may not know at the
beginning of the proof what the statement C is going to be. In doing the scratch
work for the proof, you assume that =P is true, then deduce new statements until
you have deduced some statement C' and its negation —C.

If this method seems confusing, look at it this way. In the first line of the proof
we suppose —P is true, that is we assume P is false. But if P is really true then
this contradicts our assumption that P is false. But we haven’t yet proved P to be
true, so the contradiction is not obvious. We use logic and reasoning to transform
the non-obvious contradiction =P to an obvious contradiction C A =C.

The idea of proof by contradiction is ancient, going back at least as far as the
Pythagoreans, who used it to prove that certain numbers are irrational. Our next
example follows their logic to prove that v/2 is irrational. Recall that a number is
rational if it equals a fraction of two integers, and it is irrational if it cannot be
expressed this way. Here is the exact definition.
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Definition 11.1. A real number x is rational if x = ¢ for some a,b € Z.
Also, x is irrational if it is not rational, that is if x # ¢ for every a,b € Z.

We are now ready to use contradiction to prove that v/2 is irrational. According
to the outline, the first line of the proof should be “Suppose that it is not true that
V/2 is irrational.” But it is helpful (though not mandatory) to tip our reader off to
the fact that we are using proof by contradiction. One standard way of doing this
is to make the first line “Suppose for the sake of contradiction that it is not true
that \/2 is irrational.”

Proposition. The number /2 is irrational.

Proof. Suppose for the sake of contradiction that it is not true that /2 is irrational.
Then \/5 is rational, so there are integers a and b for which

V2 = % (11.1)
Let this fraction be fully reduced; in particular, this means that a and b are not both
even. (If they were both even, the fraction could be further reduced by factoring
2’s from the numerator and denominator and canceling.) Squaring both sides of
2
Equation 11.1 gives 2 = 75, and therefore

a® = 2% (11.2)

From this it follows that a? is even. But we proved earlier (Exercise 1 on page 265)
that a? being even implies a is even. Thus, as we know that a and b are not both
even, it follows that b is odd. Now, since a is even there is an integer ¢ for which
a = 2c. Plugging this value for a into Equation (11.2), we get (2¢)? = 2b?, so
4c®> = 2b%, and hence b?> = 2¢2. This means b? is even, so b is even also. But
previously we deduced that b is odd. Thus we have the contradiction b is even and
b is odd. O

To appreciate the power of proof by contradiction, imagine trying to prove v/2
is irrational without it. Where would we begin? What would be our initial assump-
tion? There are no clear answers. Proof by contradiction gives a starting point:
Assume \/§ is rational, and work from there.

In the above proof we got the contradiction (b is even) A—(b is even) which has
the form C A =C. In general, your contradiction need not necessarily be of this
form. Any statement that is clearly false is sufficient. For example 2 # 2 would be
a fine contradiction, as would be 4 | 2, provided that you could deduce them.

Here is another ancient example, dating back at least as far as Euclid:
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Proposition. There are infinitely many prime numbers.

Proof. For the sake of contradiction, suppose there are only finitely many prime
numbers. Then we can list all the prime numbers as pi1,ps, ps, ... Pn, where p; =
2,p2 = 3,p3 = 5,p4 = 7 and so on. Thus p,, is the nth and largest prime number.
Now consider the number a = (p1paps -+ pn) + 1, that is, a is the product of all
prime numbers, plus 1. Now a, like any natural number greater than 1, has at least
one prime divisor, and that means py | a for at least one of our n prime numbers
pi. Thus there is an integer ¢ for which a = ¢pg, which is to say

(P1P2P3 - Ph—1PkDk+1 " Pn) + 1 = Cpi.

Dividing both sides of this by p gives us

1
(P1p2p3 - - Pr—1Pk+1" " Pn) + o =c,

SO

1
ZTk =Cc— (Plpzpa ©Pk—1Pk+1 - ‘pn)-

The expression on the right is an integer, while the expression on the left is not an
integer. This is a contradiction. O

Proof by contradiction often works well in proving statements of the form
Vz, P(z). The reason is that the proof set-up involves assuming —Vz, P(x), which
as we know from Section 5.4 is equivalent to 3z, —P(z). This gives us a specific x
for which —P(z) is true, and often that is enough to produce a contradiction.

This happened in the proof that v/2 is irrational on page 273. The statement
“\/2 is irrational’ is logically equivalent to Va,b € Z, 2 # (%)2 Proof by contradic-

tion involved assuming this was false, that is, we assumed — <Va, beZ,2# (%)2),

which became Ja,b € Z, 2 = (%)2. This gave a concrete equation 2 = (%)2 to work
with, and that was what led to the contradiction.
Let’s look at another example another example of form Vz, P(z).

Proposition. For every real number z € [0,7/2], we have sinz + cosz > 1.

Proof. Suppose for the sake of contradiction that this is not true.
Then there exists an = € [0, 7/2] for which sinz + cosz < 1.

Since z € [0,7/2], neither sinz nor cosz is negative, so 0 < sinz + cosz < 1.
Thus 0% < (sinz + cos #)? < 12, which gives 02 < sin® 2 + 2sinx cos z + cos® z < 12,
As sin? 2+ cos? z = 1, this becomes 0 < 1+ 2sinz cosz < 1, s0 1+2sinzcosz < 1.
Subtracting 1 from both sides gives 2sinx cosz < 0.

But this contradicts the fact that neither sinx nor cosx is negative. O
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11.2 Proving Conditional Statements by Contradiction

As the previous two chapters dealt with proving conditional statements, we now for-
malize the method for proving conditional statements with contradiction. Suppose
we want to prove a proposition of this form:

Proposition. If P, then Q.

Thus we need to prove that P = @ is a true statement. Proof by contradiction
begins with the assumption that —=(P = Q) is true, that is, that P = @ is false.
But we know that P = Q being false means that it is possible that P can be true
while @ is false. Thus the first step in the proof is to assume P and —Q. Here is
an outline:

Outline for Proving a Conditional
Statement with Contradiction

Proposition. If P, then Q.

Proof. Suppose P and —Q.

Therefore C' A =C. O

To illustrate this new technique, we revisit a familiar result: If a? is even, then
a is even. According to the outline, the first line of the proof should be “For the

2

sake of contradiction, suppose a“ is even and a is not even.”

Proposition. Suppose a € Z. If a? is even, then a is even.

2 is even and a is not even.

Proof. For the sake of contradiction, suppose a
Then a? is even, and a is odd.

Since a is odd, there is an integer ¢ for which a = 2¢ + 1.

Then a? = (2¢ +1)2 = 4c® + 4c+ 1 = 2(2¢® + 2¢) + 1, so a? is odd.

Thus a? is even and a? is not even, a contradiction. O

Here is another example.

Proposition. Ifa,b€Z and a > 2, thenatborat (b+1).

Proof. Suppose for the sake of contradiction there exist a,b € Z with a > 2,

and for which it is not true that a{b or at (b+ 1).

By DeMorgan’s law, we have a | b and a | (b+ 1).

The definition of divisibility says there are ¢,d € Z with b = ac and b+ 1 = ad.
Subtracting one equation from the other gives ad —ac =1, so a(d — ¢) = 1.

Since a is positive, d — ¢ is also positive (otherwise a(d — ¢) would be negative).
Then d — ¢ is a positive integer and a(d —c¢) =1,s0a=1/(d —¢) < 2.

Thus we have a > 2 and a < 2, a contradiction. O
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11.3 Combining Techniques

Often, especially in more complex proofs, several proof techniques are combined
within a single proof. For example, in proving a conditional statement P = @,
we might begin with direct proof and thus assume P to be true with the aim of
ultimately showing @ is true. But the truth of ¢ might hinge on the truth of some
other statement R which—together with P—would imply Q. We would then need to
prove R, and we would use whichever proof technique seems most appropriate. This
can lead to “proofs inside of proofs.” Consider the following example. The overall
approach is direct, but inside the direct proof is a separate proof by contradiction.

Proposition. Every non-zero rational number can be expressed as a product of
two irrational numbers.

Proof. This proposition can be reworded as follows: If r is a non-zero rational
number, then 7 is a product of two irrational numbers. In what follows, we prove
this with direct proof.
Suppose r is a non-zero rational number. Then r = 7 for integers a and b. Also,
r can be written as a product of two numbers as follows:
r
r=v2. —.
V2
We know /2 is irrational, so to finish the proof we must show r/ V/2 is irrational
too. For this, assume for the sake of contradiction that r/+/2 is rational. Then
r c

V2 d
for integers ¢ and d, so
d
V2=r=.
c
But we know r = a/b, which combines with the above equation to give
d ad ad
Q=g = —— = —,
V2 c bc be
This means v/2 is rational, which is a contradiction because we know it is irrational.
Therefore 7/+/2 is irrational.
Consequently r = v/2 - r/+/2 is a product of two irrational numbers. O

For another example of a proof-within-a-proof, try Exercise 5 at the end of this
chapter (or see its solution). Exercise 5 asks you to prove that /3 is irrational.
This turns out to be slightly trickier than proving that /2 is irrational.

Despite the power of proof by contradiction, it’s best to use it only when the
direct and contrapositive approaches do not seem to work. The reason for this is
that a proof by contradiction can often have hidden in it a simpler contrapositive
proof, and if this is the case it’s better to go with the simpler approach. Consider
the following example.
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Proposition. Suppose a € Z. If a® — 2a + 7 is even, then a is odd.

Proof. To the contrary, suppose a® — 2a + 7 is even and a is not odd.

That is, suppose a? — 2a + 7 is even and a is even.

Since a is even, there is an integer ¢ for which a = 2c¢.

Then a? — 2a + 7 = (2¢)2 — 2(2¢) + 7 = 2(2¢®> — 2¢ + 3) + 1, s0 a® — 2a + 7 is odd.
Thus a? — 2a + 7 is both even and odd, a contradiction. O

Though there is nothing really wrong with this proof, notice that part of it
assumes a is not odd, then deduces that a®? —2a+7 is not even. That’s contrapositive
proof! So it would be simpler to just take the contrapositive approach, as follows.

Proposition. Suppose a € Z. If a®> — 2a + 7 is even, then a is odd.

Proof. (Contrapositive) Suppose a is not odd.

Then a is even, so there is an integer ¢ for which a = 2c.

Then a? — 2a+ 7 = (2¢)% — 2(2¢) + 7 = 2(2¢® — 2c¢ +3) + 1, s0 a® — 2a + 7 is odd.
Thus a? — 2a + 7 is not even. O

11.4 Case Study: The Halting Problem

The ancient greeks used contradiction to prove that /2 is not a fraction of integers,
or (as we would say today) it is irrational. This truth was shocking and unsettling,
for it shattered their fundamental conception of what a number was.

Millennia later, contradiction again rocked mathematics. Before 1930, math-
ematicians were of the mindset that any ¢rue mathematical statement could be
proved. They also believed—roughly speaking—that any problem in discrete math-
ematics could be solved with an algorithm. Then Alan Turing proved that there
are problems that no algorithm can solve. We now examine such a problem, and
use contradiction to prove it is really insolvable.

Imagine a computer program (or algorithm) called LoopCheck. Its purpose is
to decide whether any program would go into an infinite loop if run. Think of
LoopCheck as being similar to a spell check program that reads in a document and
finds the spelling errors. LoopCheck would read in a computer program and find
“infinite loop” errors.

Turing discovered that it is absolutely impossible to write LoopCheck. No such
algorithm can possibly exist. The problem of writing one is simply unsolvable. In
computer science this is known as the halting problem, as a LoopCheck program
would decide whether or not any program halts.

Before proving that LoopCheck is impossible, let’s pause to lay out its exact
specifications, so we’ll know what we’re dealing with. Note that if we run a program
on some input, one of two things will happen: either it gets hung up in an infinite
loop, or it eventually halts. There may be several reasons for halting. Maybe it
finishes its appointed task and returns some output. Or maybe it stops because
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of some internal error like division by zero, or some other meaningless operation.
Maybe the input simply makes no sense for the program. When a program halts
under such circumstances it may return garbage for output, but it still halts.

LoopCheck does not make any evaluation about whether or not a program’s
output is garbage. Its purpose is only to decide whether or not a program goes into
an infinite loop when run on certain input.

Think of it as a procedure LoopCheck(prog,input) that reads in a program
prog and some input input for prog. Let prog(input) mean that prog is run with
input input. Then LoopCheck(prog,input) simply returns the words “GOOD” or
“BAD,” as follows.

LoopCheck (prog, input) — {GOOD %f prog(%nput) halts, o
BAD if prog(input) loops infinitely.

We're ready for Turing’s famous proof that LoopCheck is impossible. In the
proof you will see the expression LoopCheck (prog,prog), which means LoopCheck
is asked to decide whether or not a program prog halts with itself as input. Keep
in mind that lots of programs can use themselves as input. Consider a program
that counts the number of characters in a file. You could certainly run it on itself
(or at least a copy of itself) and the output would be the number of characters in
the program. Granted, most programs would come to a crashing halt if they read
in themselves as input. And if they didn’t halt, they’d run forever (i.e., they’d be
stuck in an infinite loop).

Theorem 11.2. The program LoopCheck is impossible to write.
(That is, the halting problem cannot be solved.)

Proof. For sake of contradiction, suppose that LoopCheck can be written, and it
has been implemented. Now make the following procedure called Test that reads
in a program prog as input. In running, it makes a call to LoopCheck.

Procedure Test(prog) (input prog is a program,)

1 begin

2 if LoopCheck(prog,prog) = GOOD then

3 =1

4 while (i > 0) do

5 ‘ Ti= i L this is an infinite loop
6 end

7 else

8 if LoopCheck(prog,prog) = BAD then

9 ‘ return UGLY .............. i.e., return the word “UGLY” and halt
10 end

11 end

12 end
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We will get a contradiction by running Test (Test). In other words, we will run
the above procedure Test with the input prog replaced by Test.
Let’s run Test(Test). Consider the following two cases.

Case 1. Suppose that in line 2, LoopCheck(Test,Test) = GOOD. Then
the while loop runs forever, so Test(Test) does not halt. But at the same
time, LoopCheck(Test,Test) = GOOD means that Test(Test) halts. Therefore
Test (Test) halts and does not halt. Contradiction!

Case 2. Suppose that in line 2, LoopCheck(Test,Test) = BAD. Then
Test(Test) halts at line 9 (and returns the word “UcGLy”). But the fact

LoopCheck(Test,Test) = BAD means Test(Test) does not halt. Therefore
Test (Test) halts and does not halt. Contradiction!
In either case, Test (Test) halts and does not halt, a contradiction. O

The fact that LoopCheck is impossible has some significant theoretical implica~
tions. For one, it means that certain strategies for proving theorems are hopeless.
For example, consider Fermat’s last theorem, from page 47:

For all numbers a, b, c,n € N with n > 2, it is the case that a” +b" # ¢".

It would easy to write an algorithm with nested while loops that runs through
all possible combinations of a, b, ¢ and n, and stops only when and if a” + b" = ¢".
This algorithm reads in no input (that is, its input is §)), but it either halts or loops
forever. Moreover, this algorithm (call it Fermat) halts if Fermat’s last theorem
is false, and it loops forever if Fermat’s last theorem is true. If LoopCheck were
possible, and if it were written, we could prove or disprove Fermat’s last theorem
by running

LoopCheck( Fermat, ) ).

If it returned “GOOD,” then Fermat’s last theorem would be false. If it returned
“BAD,” then Fermat’s last theorem would be true. The fact that LoopCheck is
impossible means that we can’t hope to prove Fermat’s last theorem (or any other
theorem) this way.

Our discussion of the halting problem has been somewhat informal. Most care-
ful treatments of it use mathematical constructions called Turing machines, which
are theoretical versions of computers. If this kind of thing piques your interest,
you should definitely consider taking a computer science class in the theory of com-
putation. You will need a command of all proof techniques covered in this book,
including contradiction.



July 13, 2023 15:32

280

Exercises

ws-book961x669 Discrete Math Elements Alpha page 280

Discrete Math Elements

for Chapter 11

A. Use the method of proof by contradiction to prove the following statements. (In

each
work

© X NS T A BN

e o T e S S S G
I A

18.

case, you should also think about how a direct or contrapositive proof would
. You will find in most cases that proof by contradiction is easier.)

Suppose n € Z. If n is odd, then n? is odd.

Suppose n € Z. If n? is odd, then n is odd.

Prove that /2 is irrational.

Prove that v/6 is irrational.

Prove that v/3 is irrational.

If a,b € Z, then a® —4b — 2 # 0.

If a,b € Z, then a® —4b — 3 # 0.

Suppose a,b,c € Z. If a> + b*> = ¢?, then a or b is even.

Suppose a,b € R. If a is rational and ab is irrational, then b is irrational.
There exist no integers a and b for which 21a + 30b = 1.

There exist no integers a and b for which 18a + 6b = 1.

For every positive x € Q, there is a positive y € Q for which y < x.
For every x € [7/2, |, sinx — cosx > 1.

If A and B are sets, then AN (B — A) = (.

Ifbe Z and b1k for every k € N, then b = 0.

If @ and b are positive real numbers, then a + b > 2v/ab.

For every n € Z, 41 (n* +2).

Suppose a,b € Z. If 4 | (a® + b?), then a and b are not both odd.

B. Prove the following statements using any method from Chapters 9, 10 or 11.

19.

20.

21.

22.

23.
24.

The product of any five consecutive integers is divisible by 120. (For exam-
ple, the product of 3,4,5,6 and 7 is 2520, and 2520 = 120 - 21.)

We say that a point P = (z,y) in R? is rational if both x and y are
rational. More precisely, P is rational if P = (z,5) € Q* An equation
F(z,y) = 0 is said to have a rational point if there exists zo,yo € Q such
that F(zo,yo0) = 0. For example, the curve x> +5? — 1 = 0 has rational point
(%0, y0) = (1,0). Show that the curve 2 +y* —3 = 0 has no rational points.

Exercise 20 (above) involved showing that there are no rational points on
the curve 22 + y? — 3 = 0. Use this fact to show that /3 is irrational.

Explain why 2 + %2 — 3 = 0 not having any rational solutions (Exercise 20)
implies 22 4+ y? — 3¥ = 0 has no rational solutions for k an odd, positive
integer.

Use the above result to prove that v/3F is irrational for all odd, positive k.

The number log, 3 is irrational.
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Solutions for Chapter 11

1.

Suppose n is an integer. If n is odd, then n? is odd.

Proof. Suppose for the sake of contradiction that n is odd and n? is not odd.
Then n? is even. Now, since n is odd, we have n = 2a + 1 for some integer a.
Thus n? = (2a + 1)? = 4a® + 4a 4+ 1 = 2(2a® 4 2a) + 1. This shows n? = 2b + 1,
where b is the integer b = 2a® + 2a. Therefore we have n? is odd and n? is even, a
contradiction. O

Prove that /2 is irrational.

Proof. Suppose for the sake of contradiction that ¢/2 is not irrational. Therefore
it is rational, so there exist integers a and b for which /2 = %- Let us assume that

a

this fraction is reduced, so a and b are not both even. Now we have \3/53 = (3)37

which gives 2 = ‘;—;, or 2b% = @®. From this we see that a® is even, from which we
deduce that a is even. (For if a were odd, then a® = (2¢+1)® = 8¢* +12¢* +6¢+1 =
2(4¢® +6¢® +3c) +1 would be odd, not even.) Since a is even, it follows that a = 2d
for some integer d. The equation 2b° = a® from above then becomes 2b° = (2d)37
or 2b® = 8d°. Dividing by 2, we get b> = 4d°, and it follows that b° is even. Thus b
is even also. (Using the same argument we used when a® was even.) At this point
we have discovered that both a and b are even, contradicting the fact (observed
above) that the a and b are not both even. |

Here is an alternative proof.

Proof. Suppose for the sake of contradiction that /2 is not irrational. Therefore

there exist integers a and b for which /2 = % Cubing both sides, we get 2 = ‘;—g.

From this, a® = b® 4 b%, which contradicts Fermat’s last theorem.
Prove that v/3 is irrational.

Proof. Suppose for the sake of contradiction that v/3 is not irrational. Therefore
it is rational, so there exist integers a and b for which V3= %. Let us assume that
this fraction is reduced, so a and b have no common factor. Notice that \/52 = (%)2,

2 .
s0 3 =%, or 3b> = a®. This means 3 | a*.

Now we are going to show that if a € Z and 3 | a®, then 3 | a. (This is a
proof-within-a-proof.) We will use contrapositive proof to prove this conditional
statement. Suppose 3 { a. Then there is a remainder of either 1 or 2 when 3 is
divided into a.

Case 1. There is a remainder of 1 when 3 is divided into a. Then a = 3m + 1 for
some integer m. Consequently, a® = 9m? + 6m + 1 = 3(3m? + 2m) + 1, and this
means 3 divides into a® with a remainder of 1. Thus 3 { a”.

Case 2. There is a remainder of 2 when 3 is divided into a. Then a = 3m + 2
for some integer m. Consequently, a®> = 9m? +12m +4 = 9m* +12m +3 +1 =
3(3m? +4m + 1) + 1, and this means 3 divides into a® with a remainder of 1. Thus
31a

In either case we have 3 { a?, so we've shown 3 { a implies 3 { a®. Therefore, if
3| a?, then 3 | a.
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Now go back to 3 | a? in the first paragraph. This combined with the result of
the second paragraph implies 3 | a, so a = 3d for some integer d. Now also in the
first paragraph we had 3b® = a?, which now becomes 3b> = (3d)? or 3b* = 9d?, so
b? = 3d?. But this means 3 | b2, and the second paragraph implies 3 | b. Thus we
have concluded that 3 | @ and 3 | b, but this contradicts the fact that the fraction

¢ is reduced. O

If a,b € Z, then a® — 4b — 3 # 0.

Proof. Suppose for the sake of contradiction that a,b € Z but a®> — 4b — 3 = 0.
Then we have a® = 4b+ 3 = 2(2b + 1) + 1, which means a® is odd. Therefore a is
odd also, so a = 2¢ + 1 for some integer c. Plugging this back into a> —4b—3 =0
gives us

(2¢+1)>—4b—3=0
4 +4c+1-4b-3=0
4¢® +4c—4b =2
2 +2c—2b=1
2 +¢—b) =1.
From this last equation, we see that 1 is an even number, a contradiction. |

Suppose a,b € R and a # 0. If a is rational and ab is irrational, then b is irrational.

Proof. Suppose for the sake of contradiction that a is rational and ab is irrational
and b is not irrational. Thus we have a and b rational, and ab irrational. Since a

and b are rational, we know there are integers c, d, e, f for which a = § and b = %
Then ab = %, and since both ce and df are integers, it follows that ab is rational.
But this is a contradiction because we started out with ab irrational. O

There exist no integers a and b for which 18a + 6b = 1.

Proof. Suppose for the sake of contradiction that there do exist integers a and b for
which 18a+6b = 1. Then 1 = 2(9a+3b), which means 1 is even, a contradiction. O

For every z € [r/2, 7], sinz — cosz > 1.

Proof. Suppose for the sake of contradiction that x € [r/2, 7], but sinxz — cosz <
1. Since z € [r/2,7], we know sinz > 0 and cosz < 0, so sinz — cosz > 0.
Therefore we have 0 < sinx — cosz < 1. Now the square of any number between
0 and 1 is still a number between 0 and 1, so we have 0 < (sinz — cosz)? < 1, or
0 < sin®z — 2sinzcosa + cos? ¢ < 1. Using the fact that sin® x 4 cos® x = 1, this
becomes 0 < —2sinxzcosx + 1 < 1. Subtracting 1, we obtain —2sinxcosx < 0.
But above we remarked that sinz > 0 and cosx < 0, and hence —2sinx cosz > 0.
‘We now have the contradiction —2sinx cosx < 0 and —2sinx cosx > 0. O

If b€ Z and btk for every k € N, then b = 0.

Proof. Suppose for the sake of contradiction that b € Z and bt k for every k € N,
but b # 0.

Case 1. Suppose b > 0. Then b € N, so b|b, contradicting bt k for every k € N.
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Case 2. Suppose b < 0. Then —b € N, so b|(—b), again a contradiction O

For every n € Z, 41 (n® + 2).

Proof. Assume there exists n € Z with 4 | (n? 4+ 2). Then for some k € Z,
4k = n® +2 or 2k = n® 4+ 2(1 — k). If n is odd, this means 2k is odd, and we’ve
reached a contradiction. If n is even then n = 2j and we get k = 252 + 1 — k for
some j € Z. Hence 2(k — j%) = 1, so 1 is even, a contradiction. O

Remark. 1t is fairly easy to see that two more than a perfect square is always either
2 (mod 4) or 3 (mod 4). This would end the proof immediately.

The product of 5 consecutive integers is a multiple of 120.

Proof. Starting from 0, every fifth integer is a multiple of 5, every fourth integer
is a multiple of 4, every third integer is a multiple of 3, and every other integer
is a multiple of 2. It follows that any set of 5 consecutive integers must contain a
multiple of 5, a multiple of 4, at least one multiple of 3, and at least two multiples
of 2 (possibly one of which is a multiple of 4). It follows that the product of five
consecutive integers is a multiple of 5-4 -3 -2 = 120. |

Hints for Exercises 20-23. For Exercises 20, first show that the equation a® + b? =
3¢? has no solutions (other than the trivial solution (a,b,c¢) = (0,0,0)) in the
integers. To do this, investigate the remainders of a sum of squares (mod 4). After
you've done this, prove that the only solution is indeed the trivial solution. Next
assume that the equation 2 +1? —3 = 0 has a rational solution. Use the definition
of rational numbers to yield a contradiction.



