
July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 303

Chapter 13

Proving Non-Conditional Statements

We have learned three main proof methods: direct, contrapositive and contradiction.
These methods are used to prove statements of the form “If P , then Q.” As most
propositions have this conditional form (or can be reworded to have it), the three
main methods are quite important. But some propositions are not conditional
statements. For example, they may have form “P if and only if Q.” These are
biconditional statements, not conditional statements. In this chapter we examine
ways to prove such statements, and we will also look at two other types of theorems.

13.1 If-and-Only-If Proof

Some propositions have the form

P if and only if Q.

We know from Section 3.4 that this statement asserts that both of the following
conditional statements are true:

If P , then Q.
If Q, then P .

So proving “P if and only if Q,” involves proving two conditional statements.
Recall from Section 3.4 that Q ) P is called the converse of P ) Q. Thus we need
to prove both P ) Q and its converse. These are both conditional statements and
can be proved with direct, contrapositive or contradiction proof. Here is an outline:

Outline for If-and-Only-If Proof

Proposition. P if and only if Q.

Proof.
[Prove P ) Q using direct, contrapositive or contradiction proof.]
[Prove Q ) P using direct, contrapositive or contradiction proof.] ⇤

Let’s start with a very simple example. You already know that an integer n is
odd if and only if n2 is odd, but let’s prove it anyway, just to illustrate the outline.
We will prove (n is odd))(n2 is odd) with direct proof and (n2 is odd))(n is odd)
with contrapositive proof.

303
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Proposition. An integer n is odd if and only if n2 is odd.

Proof. First we show that n being odd implies that n2 is odd. Suppose n is
odd. Then, by definition of an odd number, n = 2a + 1 for some integer a. Thus
n2 = (2a + 1)2 = 4a2 + 4a + 1 = 2(2a2 + 2a) + 1. This expresses n2 as twice an
integer, plus 1, so n2 is odd.

Conversely, we need to prove that n2 being odd implies that n is odd. We use
contrapositive proof. Suppose n is not odd. Then n is even, so n = 2a for some
integer a (by definition of an even number). Thus n2 = (2a)2 = 2(2a2), so n2 is
even because it’s twice an integer. Thus n2 is not odd. We’ve now proved that if n
is not odd, then n2 is not odd, and this is a contrapositive proof that if n2 is odd
then n is odd.

In proving “P if and only if Q,” you should begin a new paragraph when starting
the proof of Q ) P . Since this is the converse of P ) Q, it’s a good idea to begin
the paragraph with the word “Conversely” (as we did above) to remind the reader
that you’ve finished the first part of the proof and are moving on to the second.
Also it’s good to remind the reader of what statement that paragraph will prove.

The next example uses direct proof in both parts of the proof.

Proposition. Suppose a and b are integers. Then a ⌘ b (mod 6) if and only if
a ⌘ b (mod 2) and a ⌘ b (mod 3).

Proof. First we prove that if a ⌘ b (mod 6), then a ⌘ b (mod 2) and a ⌘ b (mod 3).
Suppose a ⌘ b (mod 6). This means 6 | (a� b), so there is an integer n for which

a� b = 6n.

From this we get a� b = 2(3n), which implies 2 | (a� b), so a ⌘ b (mod 2). But we
also get a� b = 3(2n), which implies 3 | (a� b), so a ⌘ b (mod 3). Therefore a ⌘ b
(mod 2) and a ⌘ b (mod 3).

Conversely, suppose a ⌘ b (mod 2) and a ⌘ b (mod 3). Since a ⌘ b (mod 2) we
get 2 | (a� b), so there is an integer k for which a� b = 2k. Therefore a� b is even.
Also, from a ⌘ b (mod 3) we get 3 | (a� b), so there is an integer ` for which

a� b = 3`.

But since we know a � b is even, it follows that ` must be even also, for if it were
odd then a� b = 3` would be odd (because a� b would be the product of two odd
integers). Hence ` = 2m for some integer m. Thus a� b = 3` = 3 · 2m = 6m. This
means 6 | (a� b), so a ⌘ b (mod 6).

Since if-and-only-if proofs simply combine methods with which we are already
familiar, we will not do any further examples in this section. However, it is of
utmost importance that you practice your skill on some of this chapter’s exercises.
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13.2 Equivalent Statements

In other courses you will may encounter a type of theorem that is neither conditional
nor biconditional. Instead, it asserts that a list of statements is “equivalent.” You
saw this (or will see it) in your linear algebra textbook, which featured the following
theorem:

Theorem Suppose A is an n⇥n matrix. The following statements are equivalent:

(a) The matrix A is invertible.

(b) The equation Ax = b has a unique solution for every b 2 Rn.

(c) The equation Ax = 0 has only the trivial solution.

(d) The reduced row echelon form of A is In.

(e) det(A) 6= 0.

(f) The matrix A does not have 0 as an eigenvalue.

When a theorem asserts that a list of statements is “equivalent,” it is asserting that
either the statements are all true, or they are all false. Thus the above theorem tells
us that whenever we are dealing with a particular n⇥ n matrix A, then either the
statements (a) through (f) are all true for A, or statements (a) through (f) are all
false for A. For example, if we happen to know that det(A) 6= 0, the theorem assures
us that in addition to statement (e) being true, all the statements (a) through (f)
are true. On the other hand, if it happens that det(A) = 0, the theorem tells us
that all statements (a) through (f) are false. In this way, the theorem multiplies
our knowledge of A by a factor of six. Obviously that can be very useful.

What method would we use to prove such a theorem? In a certain sense, the
above theorem is like an if-and-only-if theorem. An if-and-only-if theorem of form
P , Q asserts that P and Q are either both true or both false, that is, that P
and Q are equivalent. To prove P , Q we prove P ) Q followed by Q ) P ,
essentially making a “cycle” of implications from P to Q and back to P . Similarly,
one approach to proving the theorem about the n⇥n matrix would be to prove the
conditional statement (a) ) (b), then (b) ) (c), then (c) ) (d), then (d) ) (e),
then (e) ) (f) and finally (f) ) (a). This pattern is illustrated below.

(a) =) (b) =) (c)
* +
(f) (= (e) (= (d)

Notice that if these six implications have been proved, then it really does follow
that the statements (a) through (f) are either all true or all false. If one of them
is true, then the circular chain of implications forces them all to be true. On the
other hand, if one of them (say (c)) is false, the fact that (b) ) (c) is true forces
(b) to be false. This combined with the truth of (a) ) (b) makes (a) false, and so
on counterclockwise around the circle.
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So to prove that n statements are equivalent, it su�ces to prove n conditional
statements showing each statement implies another, in circular pattern. But it is
not necessary that the pattern be circular. The following schemes would also work:

(a) =) (b) () (c)
* +
(f) (= (e) () (d)

(a) () (b) () (c)
m

(f) () (e) () (d)

But a circular pattern yields the fewest conditional statements that must be
proved. Whatever the pattern, each conditional statement can be proved with
either direct, contrapositive or contradiction proof.

Though we shall not do any of these proofs in this text, you are sure to encounter
them in subsequent courses.

13.3 Existence Proofs; Existence and Uniqueness Proofs

Up until this point, we have dealt with proving conditional statements or with state-
ments that can be expressed with two or more conditional statements. Generally,
these conditional statements have form P (x) ) Q(x). (Possibly with more than
one variable.) We saw in Section 5.2 that this can be interpreted as a universally
quantified statement 8 x, P (x) ) Q(x).

Thus, conditional statements are universally quantified statements, so in proving
a conditional statement—whether we use direct, contrapositive or contradiction
proof—we are really proving a universally quantified statement.

But how would we prove an existentially quantified statement? What technique
would we employ to prove a theorem of the following form?

9x,R(x)

This statement asserts that there exists some specific object x for which R(x) is
true. To prove 9x,R(x) is true, all we would have to do is find and display an
example of a specific x that makes R(x) true.

Most theorems and propositions are conditional (or if-and-only-if) statements,
but a few have the form 9x,R(x). Such statements are called existence state-
ments, and theorems that have this form are called existence theorems. To
prove an existence theorem, all you have to do is provide a particular example that
shows it is true. This is often easy. (But not always!) Some examples follow.
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Proposition. There exists an even prime number.

Proof. Observe that 2 is an even prime number.

Admittedly, this last proposition was a bit of an oversimplification. The next
one is slightly more challenging.

Assumption 13.1. There exists an integer that can be expressed as the sum of
two perfect cubes in two di↵erent ways.

Proof. Consider 1729. Note that 13 + 123 = 1729 and 93 + 103 = 1729. So 1729
can be expressed as the sum of two perfect cubes in two di↵erent ways.

Sometimes in the proof of an existence statement, a little verification is needed
to show that the example really does work. For example, the above proof would be
incomplete if we just asserted that 1729 can be written as a sum of two cubes in
two ways without showing how this is possible.

WARNING: Although an example su�ces to prove an existence statement,
a single example does not prove a conditional statement.

Often an existence statement will be embedded in a conditional statement. Con-
sider the following. (Recall the definition of gcd on page 242.)

If a, b 2 N, then there exist integers k and ` for which gcd(a, b) = ak+b`.

This is a conditional statement that has the form

a, b 2 N =) 9 k, ` 2 Z, gcd(a, b) = ak + b`.

To prove it with direct proof, we would first assume that a, b 2 N, then prove the
existence statement 9 k, ` 2 Z, gcd(a, b) = ak+ b`. That is, we would produce two
integers k and ` (which depend on a and b) for which gcd(a, b) = ak + b`. Let’s
carry out this plan. (We will use this fundamental proposition several times later,
so it is given a number.)

Proposition 13.1. If a, b 2 N, then there exist integers k and ` for which
gcd(a, b) = ak + b`.

Proof. (Direct) Suppose a, b 2 N. Consider the set A =
�
ax+by : x, y 2 Z

 
. This

set contains both positive and negative integers, as well as 0. (Reason: Let y = 0
and let x range over all integers. Then ax + by = ax ranges over all multiples of
a, both positive, negative and zero.) Let d be the smallest positive element of A.
Then, because d is in A, it must have the form d = ak+b` for some specific k, ` 2 Z.

To finish, we will show d = gcd(a, b). We will first argue that d is a common
divisor of a and b, and then that it is the greatest common divisor.
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To see that d | a, use the division algorithm (page 215) to write a = qd + r for
integers q and r with 0  r < d. The equation a = qd+ r yields

r = a� qd

= a� q(ak + b`)

= a(1� qk) + b(�q`).

Therefore r has form r = ax + by, so it belongs to A. But 0  r < d and d is
the smallest positive number in A, so r can’t be positive; hence r = 0. Updating
our equation a = qd + r, we get a = qd, so d | a. Repeating this argument with
b = qd + r shows d | b. Thus d is indeed a common divisor of a and b. It remains
to show that it is the greatest common divisor.

As gcd(a, b) divides a and b, we have a = gcd(a, b) ·m and b = gcd(a, b) · n for
some m,n 2 Z. So d = ak+ b` = gcd(a, b) ·mk+gcd(a, b) ·n` = gcd(a, b)

�
mk+n`

�
,

and thus d is a multiple of gcd(a, b). Therefore d � gcd(a, b). But d can’t be a
larger common divisor of a and b than gcd(a, b), so d = gcd(a, b).

We conclude this section with a discussion of so-called uniqueness proofs. Some
existence statements have form “There is a unique x for which P (x).” Such a
statement asserts that there is exactly one example x for which P (x) is true. To
prove it, you must produce an example x = d for which P (d) is true, and you
must show that d is the only such example. The next proposition illustrates this.
In essence, it asserts that the set

�
ax + by : x, y 2 Z

 
consists precisely of all the

multiples of gcd(a, b).

Proposition. Suppose a, b 2 N. Then there exists a unique d 2 N with following
property: An integer m is a multiple of d if and only if m = ax + by for some
x, y 2 Z.

Proof. Suppose a, b 2 N. Let d = gcd(a, b). We now show that an integer m is
a multiple of d if and only if m = ax + by for some x, y 2 Z. Let m = dn be a
multiple of d. By Proposition 13.1 (on the previous page), there are integers k and
` for which d = ak+b`. Then m = dn = (ak+b`)n = a(kn)+b(`n), so m = ax+by
for integers x = kn and y = `n.

Conversely, suppose m = ax + by for some x, y 2 Z. Since d = gcd(a, b) is
a divisor of both a and b, we have a = dc and b = de for some c, e 2 Z. Then
m = ax+ by = dcx+ dey = d(cx+ ey), and this is a multiple of d.

We have now shown that there is a natural number d with the property that m
is a multiple of d if and only if m = ax+ by for some x, y 2 Z. It remains to show
that d is the unique such natural number. To do this, suppose d0 is any natural
number with the property that d has:

m is a multiple of d0 () m = ax+ by for some x, y 2 Z. (13.1)

We next argue that d0 = d; that is, d is the unique natural number with the stated
property. Because of (13.1), m = a · 1 + b · 0 = a is a multiple of d0. Likewise
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m = a · 0 + b · 1 = b is a multiple of d0. Hence a and b are both multiples of d0, so
d0 is a common divisor of a and b, and therefore

d0  gcd(a, b) = d.

But also, by (13.1), the multiple m = d0 ·1 = d0 of d0 can be expressed as d0 = ax+by
for some x, y 2 Z. As noted in the second paragraph of the proof, a = dc and b = de
for some c, e 2 Z. Thus d0 = ax+ by = dcx+ dey = d(cx+ ey), so d0 is a multiple
d. As d0 and d are both positive, it follows that

d  d0.

We’ve now shown that d0  d and d  d0, so d = d0. The proof is complete.

13.4 Constructive Versus Non-Constructive Proofs

Existence proofs fall into two categories: constructive and non-constructive.
Constructive proofs display an explicit example that proves the theorem; non-
constructive proofs prove an example exists without actually giving it. We illustrate
the di↵erence with two proofs of the same fact: There exist irrational numbers x
and y (possibly equal) for which xy is rational.

Proposition. There exist irrational numbers x, y for which xy is rational.

Proof. Let x =
p
2
p
2

and y =
p
2. We know y is irrational, but it is not clear

whether x is rational or irrational. On one hand, if x is irrational, then we have an
irrational number to an irrational power that is rational:

xy =

✓p
2
p
2

◆p
2

=
p
2
p
2
p
2

=
p
2
2

= 2.

On the other hand, if x is rational, then yy =
p
2
p
2

= x is rational. Either way, we
have a irrational number to an irrational power that is rational.

The above is a classic example of a non-constructive proof. It shows that
there exist irrational numbers x and y for which xy is rational without actually

producing (or constructing) an example. It convinces us that one of
�p

2
p
2�p2

or
p
2
p
2

is an irrational number to an irrational power that is rational, but it does not
say which one is the correct example. It thus proves that an example exists without
explicitly stating one.

Next comes a constructive proof of this statement, one that produces (or
constructs) two explicit irrational numbers x, y for which xy is rational.
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Proposition. There exist irrational numbers x, y for which xy is rational.

Proof. Let x =
p
2 and y = log

2
9. Then

xy =
p
2
log2 9

=
p
2
log2 3

2

=
p
2
2 log2 3

=
⇣p

2
2
⌘log2 3

= 2log2 3 = 3.

As 3 is rational, we have shown that xy = 3 is rational.
We know that x =

p
2 is irrational. The proof will be complete if we can show

that y = log
2
9 is irrational. Suppose for the sake of contradiction that log

2
9 is

rational, so there are integers a and b for which a
b = log

2
9. This means 2a/b = 9,

so
�
2a/b

�b
= 9b, which reduces to 2a = 9b. But 2a is even, while 9b is odd (because

it is the product of the odd number 9 with itself b times). This is a contradiction;
the proof is complete.

This existence proof has inside of it a separate proof (by contradiction) that
log

2
9 is irrational. Such combinations of proof techniques are, of course, typical.
Be alert to constructive and non-constructive proofs as you read proofs in other

books and articles, as well as to the possibility of crafting such proofs of your own.

Exercises for Chapter 13

Prove the following statements. These exercises are cumulative, covering all techniques
addressed in Chapters 9–13.

1. Suppose x 2 Z. Then x is even if and only if 3x+ 5 is odd.

2. Suppose x 2 Z. Then x is odd if and only if 3x+ 6 is odd.

3. Given an integer a, then a3 + a2 + a is even if and only if a is even.

4. Given an integer a, then a2 + 4a+ 5 is odd if and only if a is even.

5. An integer a is odd if and only if a3 is odd.

6. Suppose x, y 2 R. Then x3 + x2y = y2 + xy if and only if y = x2 or y = �x.

7. Suppose x, y 2 R. Then (x+ y)2 = x2 + y2 if and only if x = 0 or y = 0.

8. Suppose a, b 2 Z. Prove that a ⌘ b (mod 10) if and only if a ⌘ b (mod 2) and a ⌘ b
(mod 5).

9. Suppose a 2 Z. Prove that 14 | a if and only if 7 | a and 2 | a.

10. If a 2 Z, then a3 ⌘ a (mod 3).

11. Suppose a, b 2 Z. Prove that (a� 3)b2 is even if and only if a is odd or b is even.

12. There exist a positive real number x for which x2 <
p
x.

13. Suppose a, b 2 Z. If a+ b is odd, then a2 + b2 is odd.

14. Suppose a 2 Z. Then a2 | a if and only if a 2
�
� 1, 0, 1

 
.

15. Suppose a, b 2 Z. Prove that a + b is even if and only if a and b have the same
parity.
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16. Suppose a, b 2 Z. If ab is odd, then a2 + b2 is even.

17. There is a prime number between 90 and 100.

18. There is a set X for which N 2 X and N ✓ X.

19. If n 2 N, then 20 + 21 + 22 + 23 + 24 + · · ·+ 2n = 2n+1 � 1.

20. There exists an n 2 N for which 11 | (2n � 1).

21. Every real solution of x3 + x+ 3 = 0 is irrational.

22. If n 2 Z, then 4 | n2 or 4 | (n2 � 1).

23. Suppose a, b and c are integers. If a | b and a | (b2 � c), then a | c.

24. If a 2 Z, then 4 - (a2 � 3).

25. If p > 1 is an integer and n - p for each integer n for which 2  n  p
p, then p is

prime.

26. The product of any n consecutive positive integers is divisible by n!.

27. Suppose a, b 2 Z. If a2 + b2 is a perfect square, then a and b are not both odd.

28. Prove the division algorithm: If a, b 2 N, there exist unique integers q, r for which
a = bq + r, and 0  r < b. (A proof of existence is given in Section 2.9, but
uniqueness needs to be established too.)

29. If a | bc and gcd(a, b) = 1, then a | c. (Suggestion: Use Proposition 13.1.)

30. Suppose a, b, p 2 Z and p is prime. Prove that if p | ab then p | a or p | b.
(Suggestion: Use Proposition 13.1.)

31. If n 2 Z, then gcd(n, n+ 1) = 1.

32. If n 2 Z, then gcd(n, n+ 2) 2
�
1, 2

 
.

33. If n 2 Z, then gcd(2n+ 1, 4n2 + 1) = 1.

34. If gcd(a, c) = gcd(b, c) = 1, then gcd(ab, c) = 1. (Hint: Use Proposition 13.1.)

35. Suppose a, b 2 N. Then a = gcd(a, b) if and only if a | b.

36. Suppose a, b 2 N. Then a = lcm(a, b) if and only if b | a.

37. Suppose A and B are sets. Prove A ✓ B if and only if A�B = ;.

38. Let A and B be sets. Prove that A ✓ B if and only if A \B = A.

39. Suppose A 6= ;. Prove that A⇥B ✓ A⇥ C, if and only if B ✓ C.
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Solutions for Chapter 13

1. Suppose x 2 Z. Then x is even if and only if 3x+ 5 is odd.

Proof. We first use direct proof to show that if x is even, then 3x+5 is odd. If x is
even, then x = 2n for some integer n, so 3x+5 = 3(2n)+5 = 6n+5 = 6n+4+1 =
2(3n+2)+1. Thus 3x+5 is odd because it has form 2k+1, where k = 3n+2 2 Z.

Conversely, we need to show that if 3x+5 is odd, then x is even. We will prove this
using contrapositive proof. Suppose x is not even. Then x is odd, so x = 2n + 1
for some integer n. Thus 3x+5 = 3(2n+1)+ 5 = 6n+8 = 2(3n+4). This means
3x+ 5 is twice the integer 3n+ 4, so 3x+ 5 is even, not odd.

3. Given an integer a, then a3 + a2 + a is even if and only if a is even.

Proof. First we will prove that if a3 + a2 + a is even then a is even. This is done
with contrapositive proof. Suppose a is not even. Then a is odd, so there is an
integer n for which a = 2n+ 1. Then

a3 + a2 + a = (2n+ 1)3 + (2n+ 1)2 + (2n+ 1)

= 8n3 + 12n2 + 6n+ 1 + 4n2 + 4n+ 1 + 2n+ 1

= 8n3 + 16n2 + 12n+ 2 + 1

= 2(4n3 + 8n2 + 6n+ 1) + 1.

This expresses a3 + a2 + a as twice an integer plus 1, so a3 + a2 + a is odd, not
even. We have now shown that if a3 + a2 + a is even then a is even.

Conversely, we need to show that if a is even, then a3 + a2 + a is even. We will use
direct proof. Suppose a is even, so a = 2n for some integer n. Then a3 + a2 + a =
(2n)3 + (2n)2 +2n = 8n3 +4n2 +2n = 2(4n3 +2n2 + n). Therefore, a3 + a2 + a is
even because it’s twice an integer.

5. An integer a is odd if and only if a3 is odd.

Proof. Suppose that a is odd. Then a = 2n + 1 for some integer n, and a3 =
(2n + 1)3 = 8n3 + 12n2 + 6n + 1 = 2(4n3 + 6n2 + 3n) + 1. This shows that a3 is
twice an integer, plus 1, so a3 is odd. Thus we’ve proved that if a is odd then a3 is
odd.

Conversely we need to show that if a3 is odd, then a is odd. For this we employ
contrapositive proof. Suppose a is not odd. Thus a is even, so a = 2n for some
integer n. Then a3 = (2n)3 = 8n3 = 2(4n3) is even (not odd).

7. Suppose x, y 2 R. Then (x+ y)2 = x2 + y2 if and only if x = 0 or y = 0.

Proof. First we prove with direct proof that if (x+ y)2 = x2 + y2, then x = 0 or
y = 0. Suppose (x+ y)2 = x2 + y2. From this we get x2 + 2xy + y2 = x2 + y2, so
2xy = 0, and hence xy = 0. Thus x = 0 or y = 0.

Conversely, we need to show that if x = 0 or y = 0, then (x+ y)2 = x2 + y2. This
will be done with cases.
Case 1. If x = 0 then (x+ y)2 = (0 + y)2 = y2 = 02 + y2 = x2 + y2.
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Case 2. If y = 0 then (x+ y)2 = (x+ 0)2 = x2 = x2 + 02 = x2 + y2.
Either way, we have (x+ y)2 = x2 + y2.

9. Suppose a 2 Z. Prove that 14 | a if and only if 7 | a and 2 | a.

Proof. First we prove that if 14 | a, then 7 | a and 2 | a. Direct proof is used.
Suppose 14 | a. This means a = 14m for some integer m. Therefore a = 7(2m),
which means 7 | a, and also a = 2(7m), which means 2 | a. Thus 7 | a and 2 | a.

Conversely, we need to prove that if 7 | a and 2 | a, then 14 | a. Once again direct
proof if used. Suppose 7 | a and 2 | a. Since 2 | a it follows that a = 2m for some
integer m, and that in turn implies that a is even. Since 7 | a it follows that a = 7n
for some integer n. Now, since a is known to be even, and a = 7n, it follows that n
is even (if it were odd, then a = 7n would be odd). Thus n = 2p for an appropriate
integer p, and plugging n = 2p back into a = 7n gives a = 7(2p), so a = 14p.
Therefore 14 | a.

11. Suppose a, b 2 Z. Prove that (a� 3)b2 is even if and only if a is odd or b is even.

Proof. First we will prove that if (a � 3)b2 is even, then a is odd or b is even.
For this we use contrapositive proof. Suppose it is not the case that a is odd
or b is even. Then by DeMorgan’s law, a is even and b is odd. Thus there are
integers m and n for which a = 2m and b = 2n + 1. Now observe (a � 3)b2 =
(2m�3)(2n+1)2 = (2m�3)(4n2+4n+1) = 8mn2+8mn+2m�12n2�12n�3 =
8mn2 +8mn+2m� 12n2 � 12n� 4+ 1 = 2(4mn2 +4mn+m� 6n2 � 6n� 2)+ 1.
This shows (a� 3)b2 is odd, so it’s not even.

Conversely, we need to show that if a is odd or b is even, then (a � 3)b2 is even.
For this we use direct proof, with cases.
Case 1. Suppose a is odd. Then a = 2m+1 for some integer m. Thus (a� 3)b2 =
(2m+ 1� 3)b2 = (2m� 2)b2 = 2(m� 1)b2. Thus in this case (a� 3)b2 is even.
Case 2. Suppose b is even. Then b = 2n for some integer n. Thus (a � 3)b2 =
(a� 3)(2n)2 = (a� 3)4n2 = 2(a� 3)2n2 =. Thus in this case (a� 3)b2 is even.

Therefore, in any event, (a� 3)b2 is even.

13. Suppose a, b 2 Z. If a+ b is odd, then a2 + b2 is odd.

Hint: Use direct proof. Suppose a+ b is odd. Argue that this means a and b have
opposite parity. Then use cases.

15. Suppose a, b 2 Z. Prove that a + b is even if and only if a and b have the same
parity.

Proof. First we will show that if a+ b is even, then a and b have the same parity.
For this we use contrapositive proof. Suppose it is not the case that a and b have
the same parity. Then one of a and b is even and the other is odd. Without loss of
generality, let’s say that a is even and b is odd. Thus there are integers m and n
for which a = 2m and b = 2n + 1. Then a + b = 2m + 2n + 1 = 2(m + n) + 1, so
a+ b is odd, not even.

Conversely, we need to show that if a and b have the same parity, then a+b is even.
For this, we use direct proof with cases. Suppose a and b have the same parity.
Case 1. Both a and b are even. Then there are integers m and n for which a = 2m
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and b = 2n, so a+ b = 2m+ 2n = 2(m+ n) is clearly even.
Case 2. Both a and b are odd. Then there are integers m and n for which
a = 2m+ 1 and b = 2n+ 1, so a+ b = 2m+ 1 + 2n+ 1 = 2(m+ n+ 1) is clearly
even.

Either way, a+ b is even. This completes the proof.

17. There is a prime number between 90 and 100.

Proof. Simply observe that 97 is prime.

19. If n 2 N, then 20 + 21 + 22 + 23 + 24 + · · ·+ 2n = 2n+1 � 1.

Proof. We use direct proof. Suppose n 2 N. Let S be the number

S = 20 + 21 + 22 + 23 + 24 + · · ·+ 2n�1 + 2n. (1)

In what follows, we will solve for S and show S = 2n+1 � 1. Multiplying both sides
of (1) by 2 gives

2S = 21 + 22 + 23 + 24 + 25 + · · ·+ 2n + 2n+1. (2)

Now subtract Equation (1) from Equation (2) to obtain 2S � S = �20 + 2n+1,
which simplifies to S = 2n+1 � 1. Combining this with Equation (1) produces
20 + 21 + 22 + 23 + 24 + · · ·+ 2n = 2n+1 � 1, so the proof is complete.

21. Every real solution of x3 + x+ 3 = 0 is irrational.

Proof. Suppose for the sake of contradiction that this polynomial has a rational
solution a

b . We may assume that this fraction is fully reduced, so a and b are not

both even. We have
�
a
b

�3
+ a

b + 3 = 0. Clearing the denominator gives

a3 + ab2 + 3b3 = 0.

Consider two cases: First, if both a and b are odd, the left-hand side is a sum of
three odds, which is odd, meaning 0 is odd, a contradiction. Second, if one of a
and b is odd and the other is even, then the middle term of a3 + ab2 + 3b3 is even,
while a3 and 3b2 have opposite parity. Then a3 + ab2 +3b3 is the sum of two evens
and an odd, which is odd, again contradicting the fact that 0 is even.

23. Suppose a, b and c are integers. If a | b and a | (b2 � c), then a | c.

Proof. (Direct) Suppose a | b and a | (b2 � c). This means that b = ad and
b2�c = ae for some integers d and e. Squaring the first equation produces b2 = a2d2.
Subtracting b2 � c = ae from b2 = a2d2 gives c = a2d2 � ae = a(ad2 � e). As
ad2 � e 2 Z, it follows that a | c.

25. If p > 1 is an integer and n - p for each integer n for which 2  n  p
p, then p is

prime.

Proof. (Contrapositive) Suppose that p is not prime, so it factors as p = mn for
1 < m,n < p.

Observe that it is not the case that both m >
p
p and n >

p
p, because if this were

true the inequalities would multiply to give mn >
p
p
p
p = p, which contradicts

p = mn.
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Therefore m  p
p or n  p

p. Without loss of generality, say n  p
p. Then the

equation p = mn gives n | p, with 1 < n  p
p. Therefore it is not true that n - p

for each integer n for which 2  n  p
p.

27. Suppose a, b 2 Z. If a2 + b2 is a perfect square, then a and b are not both odd.

Proof. (Contradiction) Suppose a2 + b2 is a perfect square, and a and b are both
odd. As a2 + b2 is a perfect square, say c is the integer for which c2 = a2 + b2. As
a and b are odd, we have a = 2m+ 1 and b = 2n+ 1 for integers m and n. Then

c2 = a2 + b2 = (2m+ 1)2 + (2n+ 1)2 = 4(m2 + n2 +mn) + 2.

This is even, so c is even also; let c = 2k. Now the above equation results in
(2k)2 = 4(m2+n2+mn)+2, which simplifies to 2k2 = 2(m2+n2+mn)+1. Thus
2k2 is both even and odd, a contradiction.

29. If a | bc and gcd(a, b) = 1, then a | c.

Proof. (Direct) Suppose a | bc and gcd(a, b) = 1. The fact that a | bc means
bc = az for some integer z. The fact that gcd(a, b) = 1 means that ax + by = 1
for some integers x and y (by Proposition 13.1 on page 307). From this we get
acx + bcy = c; substituting bc = az yields acx + azy = c, that is, a(cx + zy) = c.
Therefore a | c.

31. If n 2 Z, then gcd(n, n+ 1) = 1.

Proof. Suppose d is a positive integer that is a common divisor of n and n + 1.
Then n = dx and n+1 = dy for integers x and y. Then 1 = (n+1)�n = dy�dx =
d(y � x). Now, 1 = d(y � x) is only possible if d = ±1 and y � x = ±1. Thus the
greatest common divisor of n and n+1 can be no greater than 1. But 1 does divide
both n and n+ 1, so gcd(n, n+ 1) = 1.

33. If n 2 Z, then gcd(2n+ 1, 4n2 + 1) = 1.

Proof. Note that 4n2+1 = (2n+1)(2n�1)+2. Therefore, it su�ces to show that
gcd(2n+ 1, (2n+ 1)(2n� 1) + 2) = 1. Let d be a common positive divisor of both
2n+1 and (2n+1)(2n�1)+2, so 2n+1 = dx and (2n+1)(2n�1)+2 = dy for integers
x and y. Substituting the first equation into the second gives dx(2n� 1) + 2 = dy,
so 2 = dy � dx(2n� 1) = d(y � 2nx� x). This means d divides 2, so d equals 1 or
2. But the equation 2n + 1 = dx means d must be odd. Therefore d = 1, that is,
gcd(2n+ 1, (2n+ 1)(2n� 1) + 2) = 1.

35. Suppose a, b 2 N. Then a = gcd(a, b) if and only if a | b.

Proof. Suppose a = gcd(a, b). This means a is a divisor of both a and b. In
particular a | b.

Conversely, suppose a | b. Then a divides both a and b, so a  gcd(a, b). On the
other hand, since gcd(a, b) divides a, we have a = gcd(a, b) · x for some integer x.
As all integers involved are positive, it follows that a � gcd(a, b).

It has been established that a  gcd(a, b) and a � gcd(a, b). Thus a = gcd(a, b).
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37. Suppose A and B are sets. Prove A ✓ B if and only if A�B = ;.

Proof. First we will prove that if A ✓ B, then A�B = ;. Contrapositive proof is
used. Suppose that A�B 6= ;. Thus there is an element a 2 A�B, which means
a 2 A but a /2 B. Since not every element of A is in B, we have A 6✓ B.

Conversely, we will prove that if A � B = ;, then A ✓ B. Again, contrapositive
proof is used. Suppose A 6✓ B. This means that it is not the case that every element
of A is an element of B, so there is an element a 2 A with a /2 B. Therefore we
have a 2 A�B, so A�B 6= ;.

39. Suppose A 6= ;. Prove that A⇥B ✓ A⇥ C, if and only if B ✓ C.

Proof. First we will prove that if A⇥B ✓ A⇥C, then B ✓ C. Using contraposi-
tive, suppose that B 6✓ C. This means there is an element b 2 B with b /2 C. Since
A 6= ;, there exists an element a 2 A. Now consider the ordered pair (a, b). Note
that (a, b) 2 A⇥B, but (a, b) 62 A⇥ C. This means A⇥B 6✓ A⇥ C.

Conversely, we will now show that if B ✓ C, then A ⇥ B ✓ A ⇥ C. We use direct
proof. Suppose B ✓ C. Assume that (a, b) 2 A⇥B. This means a 2 A and b 2 B.
But, as B ✓ C, we also have b 2 C. From a 2 A and b 2 C, we get (a, b) 2 A⇥ C.
We’ve now shown (a, b) 2 A⇥B implies (a, b) 2 A⇥ C, so A⇥B ✓ A⇥ C.


