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Chapter 2

Sets

All of mathematics can be described with sets. This becomes more and more ap-
parent the deeper into mathematics you go. The theory of sets is a language that is
perfectly suited to describing and explaining all types of mathematical structures.

2.1 Introduction to Sets

A set is a collection of things. The things in the collection are called elements
of the set. We are mainly concerned with sets whose elements are mathematical
entities, such as numbers, points, functions, etc.

A set is often expressed by listing its elements between commas, enclosed by
braces. For example, the collection

�

2, 4, 6, 8
 

is a set which has four elements, the
numbers 2, 4, 6 and 8. Some sets have infinitely many elements, like the set of all
integers,

�

. . . ,�4,�3,�2,�1, 0, 1, 2, 3, 4, . . .
 

.

Here the dots indicate a pattern of numbers that continues forever in both the
positive and negative directions. A set is called an infinite set if it has infinitely
many elements; otherwise it is called a finite set.

Two sets are equal if they have exactly the same elements. So
�

2, 4, 6, 8
 

=
�

4, 2, 8, 6
 

because even though they are listed in a di↵erent order, the elements are
identical; but

�

2, 4, 6, 8
 

6=
�

2, 4, 6, 7
 

. Also

�

. . .� 4,�3,�2,�1, 0, 1, 2, 3, 4 . . .
 

=
�

0,�1, 1,�2, 2,�3, 3,�4, 4, . . .
 

.

We often use uppercase letters to stand for sets. In discussing the set
�

2, 4, 6, 8
 

we might declare A =
�

2, 4, 6, 8
 

and then use A to stand for
�

2, 4, 6, 8
 

. To express
that 2 is an element of the set A, we write 2 2 A, and read this as “2 is an element
of A,” or “2 is in A,” or just “2 in A.” We also have 4 2 A, 6 2 A and 8 2 A, but
5 /2 A. We read this last expression as “5 is not an element of A,” or “5 not in A.”
Expressions like 6, 2 2 A or 2, 4, 8 2 A are used to indicate that several things are
in a set.

15
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Some sets are so significant that special symbols are reserved for them. The set
of natural numbers (the positive whole numbers) is denoted by N:

N =
�

1, 2, 3, 4, 5, 6, 7, . . .
 

.

The set of integers

Z =
�

. . . ,�4,�3,�2,�1, 0, 1, 2, 3, 4, . . .
 

is another fundamental set. The symbol R stands for the set of all real numbers,
a set that is familiar to you from calculus. Other special sets will be listed later in
this section.

Sets need not have just numbers as elements. The set B =
�

T, F
 

consists
of two letters, perhaps representing the values “true” and “false.” The set C =
�

a, e, i, o, u
 

consists of the lowercase vowels in the English alphabet. The set
D =

�

(0, 0), (1, 0), (0, 1), (1, 1)
 

has as elements the four corner points of a square
on the x-y coordinate plane. Thus (0, 0) 2 D, (1, 0) 2 D, etc., but (1, 2) /2 D (for
instance). It is even possible for a set to have other sets as elements. Consider
E =

�

1,
�

2, 3
 

,
�

2, 4
  

, which has three elements: the number 1, the set
�

2, 3
 

and
the set

�

2, 4
 

. Thus 1 2 E and
�

2, 3
 

2 E and
�

2, 4
 

2 E. But note that 2 /2 E,
3 /2 E and 4 /2 E.

Consider the set M =
�

[ 0 0
0 0 ] , [

1 0
0 1 ] , [

1 0
1 1 ]

 

of three two-by-two matrices. We
have [ 0 0

0 0 ] 2 M , but [ 1 1
0 1 ] /2 M . Letters can serve as symbols denoting a set’s

elements: If a = [ 0 0
0 0 ], b = [ 1 0

0 1 ] and c = [ 1 0
1 1 ], then M =

�

a, b, c
 

.
If X is a finite set, its cardinality or size is the number of elements it has, and

this number is denoted as |X|. Thus for the sets above, |A| = 4, |B| = 2, |C| = 5,
|D| = 4, |E| = 3 and |M | = 3.

There is a special set that, although small, plays a big role. The empty set is
the set

� 

that has no elements. We denote it as ;, so ; =
� 

. Whenever you see
the symbol ;, it stands for

� 

. Note that |;| = 0. The empty set is the only set
whose cardinality is zero.

Be careful in writing the empty set. Don’t write
�

;
 

when you mean ;. These
sets can’t be equal because ; contains nothing while

�

;
 

contains one thing, namely
the empty set. If this is confusing, think of a set as a box with things in it, so, for
example,

�

2, 4, 6, 8
 

is a “box” containing four numbers. The empty set ; =
� 

is
an empty box. By contrast,

�

;
 

is a box with an empty box inside it. Obviously,
there’s a di↵erence: An empty box is not the same as a box with an empty box
inside it. Thus ; 6=

�

;
 

. (You might also note |;| = 0 and
�

�

�

;
 

�

� = 1 as additional
evidence that ; 6=

�

;
 

.)
This box analogy can clarify sets. The set F =

�

;,
�

;
 

,
��

;
   

may look
strange but it is quite simple. It is a box containing three things: an empty box,
a box containing an empty box, and a box containing a box containing an empty
box. Thus |F | = 3. The set I =

�

N,Z
 

is a box containing two boxes, a box of
natural numbers and a box of integers. Thus |I| = 2.
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A special notation called set-builder notation is used to describe sets that
are too big to list between braces. Consider the set of even integers E =
�

. . . ,�6,�4,�2, 0, 2, 4, 6, . . .
 

. In set-builder notation this set is written as

E =
�

2n : n 2 Z
 

.

We read the first brace as “the set of all things of form,” and the colon as “such
that.” So the expression E =

�

2n : n 2 Z
 

is read as “E equals the set of all things
of form 2n, such that n is an element of Z.” The idea is that E consists of all
possible values of 2n, where n takes on all values in Z.

In general, a set X written with set-builder notation has the syntax

X =
�

expression : rule
 

,

where X is understood to contain all values of “expression” that are specified by
“rule.” For example, the set E above is the set of all values of the expression 2n that
satisfy the rule n 2 Z. The same set can be expressed many ways. For example,
E =

�

2n : n 2 Z
 

=
�

n : n is an even integer
 

=
�

n : n = 2k, k 2 Z
 

. Another
common way of writing it is

E =
�

n 2 Z : n is even
 

,

read “E is the set of all n in Z such that n is even.” Some writers use a bar instead
of a colon; for example, E =

�

n 2 Z | n is even
 

. We use the colon.

Example 2.1. Describe the set A =
�

7a+ 3b : a, b 2 Z
 

.

Solution: This set contains all numbers of form 7a+3b, where a and b are integers.
Each such number 7a + 3b is an integer, so A contains only integers. But which
integers? If n is any integer, then n = 7n + 3(�2n), so n = 7a + 3b where a = n
and b = �2n. Thus n 2 A, and so A = Z.

Example 2.2. Here are some further illustrations of set-builder notation.

1.
�

n : n is a prime number
 

=
�

2, 3, 5, 7, 11, 13, 17, . . .
 

2.
�

n 2 N : n is prime
 

=
�

2, 3, 5, 7, 11, 13, 17, . . .
 

3.
�

n2 : n 2 Z
 

=
�

0, 1, 4, 9, 16, 25, . . .
 

4.
�

x 2 R : x2 � 2 = 0
 

=
�

p
2,�

p
2
 

5.
�

x 2 Z : x2 � 2 = 0
 

= ;
6.

�

x 2 Z : |x| < 4
 

=
�

� 3,�2,�1, 0, 1, 2, 3
 

7.
�

2x : x 2 Z, |x| < 4
 

=
�

� 6,�4,�2, 0, 2, 4, 6
 

8.
�

x 2 Z : |2x| < 4
 

=
�

� 1, 0, 1
 

Items 6–8 highlight a conflict of notation that we should be alert to. The expression
|X| means absolute value if X is a number and cardinality if X is a set. The
distinction should always be clear from context. Consider

�

x 2 Z : |x| < 4
 

in item 6 above. Here x 2 Z, so x is a number (not a set), and thus the bars
in |x| must mean absolute value, not cardinality. On the other hand, suppose
A =

��

1, 2
 

,
�

3, 4, 5, 6
 

,
�

7
  

and B =
�

X 2 A : |X| < 3
 

. The elements of A
are sets (not numbers), so the |X| in the expression for B must mean cardinality.
Therefore B =

��

1, 2
 

,
�

7
  

.
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We close this section with a summary of special sets. These are sets that are so
common that they are given special names and symbols.

• The empty set: ; =
� 

• The natural numbers: N =
�

1, 2, 3, 4, 5, . . .
 

• The integers: Z =
�

. . . ,�3,�2,�1, 0, 1, 2, 3, 4, 5, . . .
 

• The rational numbers: Q =
�

x : x =
m

n
, where m,n 2 Z and n 6= 0

 

• The real numbers: R

We visualize the set R of real numbers as an infinitely long number line.

0 1 2 3 4�4 �3 �2 �1

In the parlance of Chapter 1, R is not a discrete system. But it is a fundamental
set that is nonetheless important in discrete mathematics.

Notice that Q is the set of all numbers in R that can be expressed as a fraction
of two integers. You may be aware that Q 6= R, as

p
2 /2 Q but

p
2 2 R. (If not,

this point will be addressed in Chapter 10.)
In calculus you encountered intervals on the number line. Like R, these too are

infinite sets of numbers. Any two numbers a, b 2 R with a < b give rise to various
intervals. Graphically, they are represented by a darkened segment between a and b.
A solid circle at an endpoint indicates that that number is included in the interval.
A hollow circle indicates a point that is not included in the interval.

• Closed interval: [a, b] =
�

x 2 R : a  x  b
 a b

• Open interval: (a, b) =
�

x 2 R : a < x < b
 a b

Each of these intervals is an infinite set containing infinitely many numbers as
elements. For example, though its length is short, the interval (0.1, 0.2) contains
infinitely many numbers, that is, all numbers between 0.1 and 0.2. It is an unfor-
tunate notational accident that (a, b) can denote both an open interval on the line
and a point on the plane. The di↵erence is usually clear from context. In the next
section we will see yet another meaning of (a, b).

Exercises for Section 2.1

A. Write each of the following sets by listing their elements between braces.

1.
�
5x� 1 : x 2 Z

 
2.

�
3x+ 2 : x 2 Z

 

3.
�
x 2 Z : �2  x < 7

 
4.

�
x 2 N : �2 < x  7

 

5.
�
x 2 R : x2 = 3

 
6.

�
x 2 R : x2 = 9

 

7.
�
x 2 R : x2 + 5x = �6

 
8.

�
x 2 R : x3 + 5x2 = �6x

 

9.
�
x 2 R : sin⇡x = 0

 
10.

�
x 2 R : cosx = 1
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11.
�
x 2 Z : |x| < 5

 
12.

�
x 2 Z : |2x| < 5

 

13.
�
x 2 Z : |6x| < 5

 
14.

�
5x : x 2 Z, |2x|  8

 

15.
�
5a+ 2b : a, b 2 Z

 
16.

�
6a+ 2b : a, b 2 Z

 

B. Write each of the following sets in set-builder notation.

17.
�
2, 4, 8, 16, 32, 64 . . .

 
18.

�
0, 4, 16, 36, 64, 100, . . .

 

19.
�
. . . ,�6,�3, 0, 3, 6, 9, 12, 15, . . .

 
20.

�
. . . ,�8,�3, 2, 7, 12, 17, . . .

 

21.
�
0, 1, 4, 9, 16, 25, 36, . . .

 
22.

�
3, 6, 11, 18, 27, 38, . . .

 

23.
�
3, 4, 5, 6, 7, 8

 
24.

�
� 4,�3,�2,�1, 0, 1, 2

 

25.
�
. . . , 1

8

, 1

4

, 1

2

, 1, 2, 4, 8, . . .
 

26.
�
. . . , 1

27

, 1

9

, 1

3

, 1, 3, 9, 27, . . .
 

27.
�
. . . ,�⇡

2

, 0, ⇡

2

,⇡, 3⇡

2

, 2⇡, 5⇡

2

, . . .
 

28.
�
. . . ,� 3

2

,� 3

4

, 0, 3

4

, 3

2

, 9

4

, 3, 15

4

, 9

2

, . . .
 

C. Find the cardinalities of the following sets

29.
��

1
 
,
�
2,
�
3, 4

  
, ;
 

30.
��

1, 4
 
, a, b,

��
3, 4

  
,
�
;
  

31.
���

1
 
,
�
2,
�
3, 4

  
, ;
  

32.
���

1, 4
 
, a, b,

��
3, 4

  
,
�
;
   

33.
�
x 2 Z : |x| < 10

 
34.

�
x 2 N : |x| < 10

 

35.
�
x 2 Z : x2 < 10

 
36.

�
x 2 N : x2 < 10

 

37.
�
x 2 N : x2 < 0

 
38.

�
x 2 N : 5x  20

 

2.2 The Cartesian Product

Given two sets A and B, it is possible to “multiply” them to produce a new set
denoted as A ⇥ B. This operation is called the Cartesian product. To understand
it, we must first understand the idea of an ordered pair.

Definition 2.1. An ordered pair is a list (x, y) of two things x and y, enclosed
in parentheses and separated by a comma.

For example, (2, 4) is an ordered pair, as is (4, 2). These ordered pairs are
di↵erent because even though they have the same things in them, the order is
di↵erent. We write (2, 4) 6= (4, 2). Right away you can see that ordered pairs
can be used to describe points on the plane, as was done in calculus, but they are
not limited to just that. The things in an ordered pair don’t have to be numbers.
You can have ordered pairs of letters, such as (m, `), ordered pairs of sets such as
(
�

2, 5
 

,
�

3, 2
 

), even ordered pairs of ordered pairs like ((2, 4), (4, 2)). The following
are also ordered pairs: (2,

�

1, 2, 3
 

) and (R, (0, 0)). Any list of two things enclosed
by parentheses is an ordered pair. Now we are ready to define the Cartesian product.

Definition 2.2. The Cartesian product of two sets A and B is another set,
denoted as A⇥B and defined as A⇥B =

�

(a, b) : a 2 A, b 2 B
 

.

Thus A⇥B is a set of ordered pairs of elements from A and B. For example, if
A =

�

k, `,m
 

and B =
�

q, r
 

, then

A⇥B =
�

(k, q), (k, r), (`, q), (`, r), (m, q), (m, r)
 

.
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Figure 2.1 shows how to make a schematic diagram of A⇥B. Line up the elements
of A horizontally and line up the elements of B vertically, as if A and B form an
x- and y-axis. Then fill in the ordered pairs so that each element (x, y) is in the
column headed by x and the row headed by y.

B

A

q

r (k, r) (`, r) (m, r)

(k, q) (`, q) (m, q)

k ` m

A⇥B

Fig. 2.1 A diagram of a Cartesian product

For another example,
�

0, 1
 

⇥
�

2, 1
 

=
�

(0, 2), (0, 1), (1, 2), (1, 1)
 

. If you are
a visual thinker, you may wish to draw a diagram similar to Figure 2.1. The
rectangular array of such diagrams give us the following general fact.

Fact 2.1. If A and B are finite sets, then |A⇥B| = |A| · |B|.

Example 2.3. Suppose A =
�

, , , , ,
 

is a set consisting of the six faces
of a dice. The Cartesian product A⇥A is diagramed below.

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )
A⇥A

A

A

Note that A ⇥ A has 6 · 6 = 36 elements. We can think of it as the set of possible
outcomes in rolling a dice two times in a row. Each element of A⇥A is an ordered
pair of form

�

result of 1st roll , result of 2nd roll
�

.

This models the sample space mentioned on page 5. Cartesian products are useful
for describing and analyzing such situations.
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The set R ⇥ R =
�

(x, y) : x, y 2 R
 

should be familiar. Think of it as the
set of points on the Cartesian plane, drawn in Figure 2.2(a). The set R ⇥ N =
�

(x, y) : x 2 R, y 2 N
 

consists of all points on the Cartesian plane whose second
coordinate is a natural number. This is illustrated in Figure 2.2(b), which shows
that R⇥N looks like infinitely many horizontal lines at integer heights above the x
axis. The set N⇥N can be visualized as the set of all points on the Cartesian plane
whose coordinates are both natural numbers. It looks like a grid of dots in the first
quadrant, as illustrated in Figure 2.2(c).

x x x

y y y

(a) (b) (c)

R⇥ R R⇥ N N⇥ N

Fig. 2.2 Drawings of some Cartesian products

It is even possible to form Cartesian products of Cartesian products, as in R⇥
(N⇥ Z) =

�

(x, (y, z)) : x 2 R, (y, z) 2 N⇥ Z
 

.
We can also define Cartesian products of three or more sets by moving beyond

ordered pairs. An ordered triple is a list (x, y, z). The Cartesian product of the
three sets R, N and Z is R ⇥ N ⇥ Z =

�

(x, y, z) : x 2 R, y 2 N, z 2 Z
 

. Of course
there is no reason to stop with ordered triples. In general,

A1 ⇥A2 ⇥ · · ·⇥A
n

=
�

(x1, x2, . . . , xn

) : x
i

2 A
i

for each i = 1, 2, . . . , n
 

.

Be mindful of parentheses. There is a slight di↵erence between R⇥ (N⇥Z) and
R⇥N⇥Z. The first is a Cartesian product of two sets; its elements are ordered pairs
(x, (y, z)). The second is a Cartesian product of three sets; its elements look like
(x, y, z). To be sure, in many situations there is no harm in blurring the distinction
between expressions like (x, (y, z)) and (x, y, z), but for now we regard them as
di↵erent.

We can also take Cartesian powers of sets. For any set A and positive integer
n, the power An is the Cartesian product of A with itself n times:

An = A⇥A⇥ · · ·⇥A =
�

(x1, x2, . . . , xn

) : x1, x2, . . . , xn

2 A
 

.

In this way, R2 is the familiar Cartesian plane and R3 is three-dimensional space.
You can visualize how, if R2 is the plane, then Z2 =

�

(m,n) : m,n 2 Z
 

is a grid
of points on the plane. Likewise, as R3 is 3-dimensional space, Z3 =

�

(m,n, p) :
m,n, p 2 Z

 

is a grid of points in space.
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In other courses you may encounter sets that are very similar to Rn, but yet
have slightly di↵erent shades of meaning. Consider, for example, the set of all
two-by-three matrices with entries from R:

M = {[ u v w

x y z

] : u, v, w, x, y, z 2 R} .

This is not really all that di↵erent from the set

R6 =
�

(u, v, w, x, y, z) : u, v, w, x, y, z 2 R
 

.

The elements of these sets are merely certain arrangements of six real numbers.
Despite their similarity, we maintain that M 6= R6, for two-by-three matrices are
not the same things as sequences of six numbers.

We close with one further example of a Cartesian power.

Example 2.4. We can describe the two sides of a coin by the set S =
�

H,T
 

. The
possible outcomes of tossing the coin seven times in a row can be described with
the Cartesian power S7. A typical element of S7 looks like

(H,H, T,H, T, T, T ),

meaning a head was tossed first, then another head, then a tail, then a head followed
by three tails. We can thus regard the elements of S7 as lists of length 7 made from
the symbols H and T .

Note that |S7| = 27 = 128. If this is not clear now, then it will be explained
fully in Chapter 5, where we will undertake a careful study of lists.

Exercises for Section 2.2

A. Write out the indicated sets by listing their elements between braces.

1. Suppose A =
�
1, 2, 3, 4

 
and B =

�
a, c

 
.

(a) A⇥B (b) B ⇥A (c) A⇥A (d) B ⇥B

(e) ; ⇥B (f) (A⇥B)⇥B (g) A⇥ (B ⇥B) (h) B3

2. Suppose A =
�
⇡, e, 0

 
and B =

�
0, 1

 
.

(a) A⇥B (b) B ⇥A (c) A⇥A (d) B ⇥B

(e) A⇥ ; (f) (A⇥B)⇥B (g) A⇥ (B ⇥B) (h) A⇥B ⇥B

3.
�
x 2 R : x2 = 2

 
⇥
�
a, c, e

 
4.

�
n 2 Z : 2 < n < 5

 
⇥
�
n 2 Z : |n| = 5

 

5.
�
x 2 R : x2 = 2

 
⇥
�
x 2 R : |x| = 2

 
6.

�
x 2 R : x2 = x

 
⇥
�
x 2 N : x2 = x

 

7.
�
;
 
⇥
�
0, ;

 
⇥
�
0, 1

 
8.

�
0, 1

 
4
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B. Sketch these Cartesian products on the x-y plane R2 (or R3 for the last two).

9.
�
1, 2, 3

 
⇥
�
� 1, 0, 1

 
10.

�
� 1, 0, 1

 
⇥
�
1, 2, 3

 

11. [0, 1]⇥ [0, 1] 12. [�1, 1]⇥ [1, 2]

13.
�
1, 1.5, 2

 
⇥ [1, 2] 14. [1, 2]⇥

�
1, 1.5, 2

 

15.
�
1
 
⇥ [0, 1] 16. [0, 1]⇥

�
1
 

17. N⇥ Z 18. Z⇥ Z
19. [0, 1]⇥ [0, 1]⇥ [0, 1] 20.

�
(x, y) 2 R2 : x2 + y2  1

 
⇥ [0, 1]

2.3 Subsets

It can happen that every element of a set A is an element of another set B. For
example, each element of A =

�

0, 2, 4
 

is also an element of B =
�

0, 1, 2, 3, 4
 

.
When A and B are related this way we say that A is a subset of B.

Definition 2.3. Suppose A and B are sets. If every element of A is also an
element of B, then we say A is a subset of B, and we denote this as A ✓ B. We
write A 6✓ B if A is not a subset of B, that is, if it is not true that every element
of A is also an element of B. Thus A 6✓ B means that there is at least one element
of A that is not an element of B.

Example 2.5. Be sure you understand why each of the following is true.

1.
�

2, 3, 7
 

✓
�

2, 3, 4, 5, 6, 7
 

2.
�

2, 3, 7
 

6✓
�

2, 4, 5, 6, 7
 

3.
�

2, 3, 7
 

✓
�

2, 3, 7
 

4.
�

2n : n 2 Z
 

✓ Z

5.
�

(x, sin(x)) : x 2 R
 

✓ R2

6.
�

2, 3, 5, 7, 11, 13, 17, . . .
 

✓ N
7. N ✓ Z ✓ Q ✓ R
8. R⇥ N ✓ R⇥ R

This brings us to a significant fact: If B is any set whatsoever, then ; ✓ B. To
see why this is true, look at the last sentence of Definition 2.3. It says that ; 6✓ B
would mean that there is at least one element of ; that is not an element of B.
But this cannot be so because ; contains no elements! Thus it is not the case that
; 6✓ B, so it must be that ; ✓ B.

Fact 2.2. The empty set is a subset of every set, that is, ; ✓ B for any set B.

Here is another way to look at it. Imagine a subset of B as a thing you make
by starting with braces

� 

, then filling them with selections from B. For example,
to make one particular subset of B =

�

a, b, c
 

, start with
� 

, select b and c from
B and insert them into

� 

to form the subset
�

b, c
 

. Alternatively, you could have
chosen just a to make

�

a
 

, and so on. But one option is to simply select nothing
from B. This leaves you with the subset

� 

. Thus
� 

✓ B. More often we write it
as ; ✓ B.
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This idea of “making” a subset can help us list out all the subsets of a given
set B. As an example, let B =

�

a, b, c
 

. Let’s list all of its subsets. One way of
approaching this is to make a tree-like structure. Begin with the subset

� 

, which
is shown on the left of Figure 2.3. Considering the element a of B, we have a choice:
insert it or not. The lines from

� 

point to what we get depending whether or not
we insert a, either

� 

or
�

a
 

. Now move on to the element b of B. For each of the
sets just formed we can either insert or not insert b, and the lines on the diagram
point to the resulting sets

� 

,
�

b
 

,
�

a
 

, or
�

a, b
 

. Finally, to each of these sets, we
can either insert c or not insert it, and this gives us, on the far right-hand column,
the sets

� 

,
�

c
 

,
�

b
 

,
�

b, c
 

,
�

a
 

,
�

a, c
 

,
�

a, b
 

and
�

a, b, c
 

. These are the eight
subsets of B =

�

a, b, c
 

.

Insert a ? Insert b ? Insert c ?

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

� 

� 

� 

� 

�

c
 

�

b
 

�

b, c
 

�

a
 

�

a, c
 

�

a, b
 

�

a, b, c
 

�

b
 

�

a
 

�

a, b
 

�

a
 

Fig. 2.3 A “tree” for listing subsets

We can see from the way this tree branches out that if it happened that B =
�

a
 

,
then B would have just two subsets, those in the second column of the diagram.
If it happened that B =

�

a, b
 

, then B would have four subsets, those listed in
the third column, and so on. At each branching of the tree, the number of subsets
doubles. Thus in general, if |B| = n, then B must have 2n subsets.

Fact 2.3. If a finite set has n elements, then it has 2n subsets.
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For a slightly more complex example, consider listing the subsets of B =
�

1, 2,
�

1, 3
  

. This B has just three elements: 1, 2 and
�

1, 3
 

. At this point
you probably don’t even have to draw a tree to list out B’s subsets. You just make
all the possible selections from B and put them between braces to get

� 

,
�

1
 

,
�

2
 

,
��

1, 3
  

,
�

1, 2
 

,
�

1,
�

1, 3
  

,
�

2,
�

1, 3
  

,
�

1, 2,
�

1, 3
  

.

These are the eight subsets of B. Exercises like this help you identify what is and
isn’t a subset. You know immediately that a set such as

�

1, 3
 

is not a subset of B
because it can’t be made by selecting elements from B, as the 3 is not an element
of B and thus is not a valid selection. Notice that although

�

1, 3
 

6✓ B, it is true
that

�

1, 3
 

2 B. Also,
��

1, 3
  

✓ B.

Example 2.6. Be sure you understand why the following statements are true. Each
illustrates an aspect of set theory that you’ve learned so far.

1. 1 2
�
1,
�
1
  

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 is the first element listed in
�
1,
�
1
  

2. 1 6✓
�
1,
�
1
  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because 1 is not a set

3.
�
1
 
2
�
1,
�
1
  

. . . . . . . . . . . . . . . . . . .
�
1
 
is the second element listed in

�
1,
�
1
  

4.
�
1
 
✓
�
1,
�
1
  

. . . . . . . . . . . . . . . . .make subset
�
1
 
by selecting 1 from

�
1,
�
1
  

5.
��

1
  

/2
�
1,
�
1
  

. . because
�
1,
�
1
  

contains only 1 and
�
1
 
, and not

��
1
  

6.
��

1
  

✓
�
1,
�
1
  

. . . . . . . . .make subset
��

1
  

by selecting
�
1
 
from

�
1,
�
1
  

7. N /2 N . . . . . . . . . . . . . . . . .N is a set (not a number) and N contains only numbers

8. N ✓ N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because X ✓ X for every set X

9. ; /2 N . . . . . . . . . . . . . . . . . . . . because the set N contains only numbers and no sets

10. ; ✓ N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because ; is a subset of every set

11. N 2
�
N
 
. . . . . . . . . . . . . . . . . . . . . . . . . because

�
N
 
has just one element, the set N

12. N 6✓
�
N
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .because, for instance, 1 2 N but 1 /2
�
N
 

13. ; /2
�
N
 
. . . . . . . . . . . . . . . . . . . note that the only element of

�
N
 
is N, and N 6= ;

14. ; ✓
�
N
 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .because ; is a subset of every set

15. ; 2
�
;,N

 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; is the first element listed in

�
;,N

 

16. ; ✓
�
;,N

 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because ; is a subset of every set

17.
�
N
 
✓
�
;,N

 
. . . . . . . . . . . . . . . . . . . .make subset

�
N
 
by selecting N from

�
;,N

 

18.
�
N
 
6✓
�
;,
�
N
  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .because N /2
�
;,
�
N
  

19.
�
(1, 2), (2, 2), (7, 1)

 
✓ N⇥ N

Though they should help you understand the concept of subset, the above ex-
amples are somewhat artificial. But in general, subsets arise very naturally. For
instance, consider the unit circle C =

�

(x, y) 2 R2 : x2 + y2 = 1
 

. This is a
subset C ✓ R2. Likewise the graph of a function y = f(x) is a set of points
G =

�

(x, f(x)) : x 2 R
 

, and G ✓ R2. Surely sets such as C and G are more easily
understood or visualized when regarded as subsets of R2. Mathematics is filled with
such instances where it is important to regard one set as a subset of another.
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Exercises for Section 2.3

A. List all the subsets of the following sets.

1.
�
1, 2, 3, 4

 
2.

�
1, 2, ;

 
3.

��
R
  

4. ;
5.

�
;
 

6.
�
R,Q,N

 
7.

�
R,
�
Q,N

  
8.

��
0,1

 
,
�
1,
�
2
  

,
�
0
  

B. Write out the following sets by listing their elements between braces.

9.
�
X : X ✓

�
3, 2, a

 
and |X| = 2

 
10.

�
X ✓ N : |X|  1

 

11.
�
X : X ✓

�
3, 2, a

 
and |X| = 4

 
12.

�
X : X ✓

�
3, 2, a

 
and |X| = 1

 

C. Decide if the following statements are true or false. Explain.

13. R3 ✓ R3 14. R2 ✓ R3

15.
�
(x,y) 2 R2 : x� 1 = 0

 
✓
�
(x,y) 2 R2 : x2 � x = 0

 

16.
�
(x,y) 2 R2 : x2 � x = 0

 
✓
�
(x,y) 2 R2 : x� 1 = 0

 

2.4 Power Sets

Given a set, you can form a new set with the power set operation, defined as follows.

Definition 2.4. If A is a set, the power set of A is another set, denoted as P(A)
and defined to be the set of all subsets of A. In symbols, P(A) =

�

X : X ✓ A
 

.

For example, suppose A =
�

1, 2, 3
 

. The power set of A is the set of all subsets
of A. We learned how to find these subsets in the previous section, and they are
� 

,
�

1
 

,
�

2
 

,
�

3
 

,
�

1, 2
 

,
�

1, 3
 

,
�

2, 3
 

and
�

1, 2, 3
 

. So the power set of A is

P(A) =
�

;,
�

1
 

,
�

2
 

,
�

3
 

,
�

1, 2
 

,
�

1, 3
 

,
�

2, 3
 

,
�

1, 2, 3
  

.

As we saw in the previous section, if a finite set A has n elements, then it has
2n subsets, and thus its power set has 2n elements.

Fact 2.4. If A is a finite set, then |P(A)| = 2|A|.

Example 2.7. Be sure you understand the following statements.

1. P
��

0, 1, 3
 �

=
�
;,

�
0
 
,
�
1
 
,
�
3
 
,
�
0, 1

 
,
�
0, 3

 
,
�
1, 3

 
,
�
0, 1, 3

  

2. P
��

1, 2
 �

=
�
;,

�
1
 
,
�
2
 
,
�
1, 2

  

3. P
��

1
 �

=
�
;,

�
1
  

4. P (;) =
�
;
 

5. P
��

a
 �

=
�
;,

�
a
  

6. P
��

;
 �

=
�
;,

�
;
  

7. P
��

a
 �

⇥ P
��

;
 �

=
�
(;, ;),

�
;,
�
;
 �

,
��

a
 
, ;
�
,
��

a
 
,
�
;
 �  

8. P
�
P

��
;
 ��

=
�
;,

�
;
 
,
��

;
  

,
�
;,
�
;
   

9. P
��

1,
�
1, 2

  �
=
�
;,

�
1
 
,
��

1, 2
  

,
�
1,
�
1, 2

   

10. P
��

Z,N
 �

=
�
;,

�
Z
 
,
�
N
 
,
�
Z,N
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Next are some that are wrong. See if you can determine why they are wrong and make
sure you understand the explanation on the right.

11. P(1) =
�
;,

�
1
  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .meaningless because 1 is not a set

12. P
��

1,
�
1, 2

  �
=
�
;,
�
1
 
,
�
1, 2

 
,
�
1,
�
1, 2

   
. . . . wrong since

�
1, 2

 
6✓
�
1,
�
1, 2

  

13. P
��

1,
�
1, 2

  �
=
�
;,
��

1
  

,
��

1, 2
  

,
�
;,
�
1, 2

   
. .wrong, as

��
1
  

6✓
�
1,
�
1, 2

  

In 1–10, notice that |P(A)| = 2|A|, in accordance with Fact 2.4.

If A is finite, it is possible (though maybe not practical) to list out P(A) between
braces as was done in Example 2.7 above. That is not possible if A is infinite. For
example, consider P(N). If you start listing its elements you quickly discover that
N has infinitely many subsets, and it’s not clear how (or if) they could be arranged
as a list with a definite pattern:

P(N) =
�

;,
�

1
 

,
�

2
 

, . . . ,
�

1, 2
 

,
�

1, 3
 

, . . . ,
�

39, 47
 

,

. . . ,
�

3, 87, 131
 

, . . . ,
�

2, 4, 6, 8, . . .
 

, . . . ? . . .
 

.

The set P(R2) is mind boggling. Think of R2 =
�

(x, y) : x, y 2 R
 

as the
set of all points on the Cartesian plane. A subset of R2 (that is, an element of
P(R2)) is a set of points in the plane. Let’s look at some of these sets. Since
�

(0, 0), (1, 1)
 

✓ R2, we know that
�

(0, 0), (1, 1)
 

2 P(R2). We can even draw a
picture of this subset, as in Figure 2.4(a). For another example, the graph of y = x2

is the set of points G =
�

(x, x2) : x 2 R
 

and this is a subset of R2, so G 2 P(R2).
Figure 2.4(b) is a picture of G. This can be done for any function, so the graph of
any imaginable function f : R ! R is an element of P(R2).

x x x

y y y

(a) (b) (c)

Fig. 2.4 Three of the many, many sets in P(R2)

In fact, any black-and-white image on the plane can be thought of as a subset
of R2, where the black points belong to the subset and the white points do not. So
the text “INFINITE” in Figure 2.4(c) is a subset of R2 and therefore an element
of P(R2). By that token, P(R2) contains a copy of the page you are reading now.

Thus in addition to containing every imaginable function and every imaginable
black-and-white image, P(R2) also contains the full text of every book that was
ever written, those that are yet to be written and those that will never be written.
Inside of P(R2) is a detailed biography of your life, from beginning to end, as well
as the biographies of all of your unborn descendants. It is startling that the five
symbols used to write P(R2) can express such an incomprehensibly large set.
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Exercises for Section 2.4

A. Find the indicated sets.

1. P
���

a, b
 
,
�
c
  �

2. P
��

1, 2, 3, 4
 �

3. P
���

;
 
, 5
 �

4. P
��

R,Q
 �

5. P
�
P

��
2
 ��

6. P
��

1, 2
 �

⇥ P
��

3
 �

7. P
��

a, b
 �

⇥ P
��

0, 1
 �

8. P
��

1, 2
 
⇥
�
3
 �

9. P
��

a, b
 
⇥
�
0
 �

10.
�
X 2 P

��
1, 2, 3

 �
: |X|  1

 

11.
�
X ✓ P

��
1, 2, 3

 �
: |X|  1

 
12.

�
X 2 P

��
1, 2, 3

 �
: 2 2 X

 

B. Suppose that |A| = m and |B| = n. Find the following cardinalities.

13. |P(P(P(A)))| 14. |P(P(A))|
15. |P(A⇥B)| 16. |P(A)⇥ P(B)|
17.

���X 2 P(A) : |X|  1
 �� 18. |P(A⇥ P(B))|

19. |P(P(P(A⇥ ;)))| 20.
���X ✓ P(A) : |X|  1

 ��

2.5 Union, Intersection, Di↵erence

Just as numbers are combined with operations such as addition or multiplication,
various operations can be applied to sets. The Cartesian product (Section 2.2) is
one such operation; given sets A and B, we can combine them with ⇥ to get a new
set A⇥B. Here are three new operations called union, intersection and di↵erence.

Definition 2.5. Suppose A and B are sets.
The union of A and B is the set A [B =

�

x : x 2 A or x 2 B
 

.
The intersection of A and B is the set A \B =

�

x : x 2 A and x 2 B
 

.
The di↵erence of A and B is the set A�B =

�

x : x 2 A and x /2 B
 

.

In words, the union A[B is the set of all things that are in A or in B (or in both).
The intersection A \ B is the set of all things in both A and B. The di↵erence
A�B is the set of all things that are in A but not in B.

Example 2.8. Suppose A =
�

a, b, c, d, e
 

, B =
�

d, e, f
 

and C =
�

1, 2, 3
 

.

1. A [B =
�

a, b, c, d, e, f
 

2. A \B =
�

d, e
 

3. A�B =
�

a, b, c
 

4. B �A =
�

f
 

5. (A�B) [ (B �A) =
�

a, b, c, f
 

6. A [ C =
�

a, b, c, d, e, 1, 2, 3
 

7. A \ C = ;
8. A� C =

�

a, b, c, d, e
 

9. (A \ C) [ (A� C) =
�

a, b, c, d, e
 

10. (A \B)⇥B =
�

(d, d), (d, e), (d, f), (e, d), (e, e), (e, f)
 

Observe that for any sets X and Y it is always true that X [ Y = Y [X and
X \ Y = Y \X, but in general X � Y 6= Y �X.
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A

B
A [B

A \B

A�B

(a) (b) (c) (d)

Fig. 2.5 The union, intersection and di↵erence of sets A and B

Example 2.9. Let A =
�

(x, x2) : x 2 R
 

be the graph of the equation y = x2

and let B =
�

(x, x+2) : x 2 R
 

be the graph of y = x + 2. These sets are subsets
of R2. They are sketched together in Figure 2.5(a). Figure 2.5(b) shows A [ B,
the set of all points (x, y) that are on one (or both) of the two graphs. Note that
A \ B =

�

(�1, 1), (2, 4)
 

has just two elements, the two points where the graphs
intersect, as illustrated in Figure 2.5(c). Figure 2.5(d) shows A�B, which is the set
A with “holes” where B crossed it. In set builder notation, we could write A[B =
�

(x, y) : x 2 R, y = x2 or y = x+2
 

and A�B =
�

(x, x2) : x 2 R�
�

� 1, 2
  

.

Exercises for Section 2.5

1. Suppose A =
�
4, 3, 6, 7, 1, 9

 
, B =

�
5, 6, 8, 4

 
and C =

�
5, 8, 4

 
. Find:

(a) A [B (b) A \B (c) A�B

(d) A� C (e) B �A (f) A \ C

(g) B \ C (h) B [ C (i) C �B

2. Suppose A =
�
0, 2, 4, 6, 8

 
, B =

�
1, 3, 5, 7

 
and C =

�
2, 8, 4

 
. Find:

(a) A [B (b) A \B (c) A�B

(d) A� C (e) B �A (f) A \ C

(g) B \ C (h) C �A (i) C �B

3. Suppose A =
�
0, 1

 
and B =

�
1, 2

 
. Find:

(a) (A⇥B) \ (B ⇥B) (b) (A⇥B) [ (B ⇥B) (c) (A⇥B)� (B ⇥B)

(d) (A \B)⇥A (e) (A⇥B) \B (f) P(A) \ P(B)

(g) P(A)� P(B) (h) P(A \B) (i) P(A⇥B)

4. Suppose A =
�
b, c, d

 
and B =

�
a, b

 
. Find:

(a) (A⇥B) \ (B ⇥B) (b) (A⇥B) [ (B ⇥B) (c) (A⇥B)� (B ⇥B)

(d) (A \B)⇥A (e) (A⇥B) \B (f) P(A) \ P(B)

(g) P(A)� P(B) (h) P(A \B) (i) P(A)⇥ P(B)

5. Sketch the sets X = [1, 3]⇥ [1, 3] and Y = [2, 4]⇥ [2, 4] on the plane R2. On separate
drawings, shade in the sets X [ Y , X \ Y , X � Y and Y �X. (Hint: X and Y are
Cartesian products of intervals. You may wish to review the exercises for Section 2.2.)

6. Sketch the sets X = [�1, 3]⇥ [0, 2] and Y = [0, 3]⇥ [1, 4] on the plane R2. On separate
drawings, shade in the sets X [ Y , X \ Y , X � Y and Y �X.
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2.6 Complement

This section introduces yet another set operation, called the set complement. The
definition requires the idea of a universal set, which we now discuss.

When dealing with a set, we almost always regard it as a subset of some larger
set. For example, consider the set of prime numbers P =

�

2, 3, 5, 7, 11, 13, . . .
 

. If
asked to name some things that are not in P , we might mention some composite
numbers like 4 or 6 or 423. It probably would not occur to us to say that Vladimir
Putin is not in P . True, Vladimir Putin is not in P , but he lies entirely outside of
the discussion of what is a prime number and what is not. We have an unstated
assumption that

P ✓ N
because N is the most natural setting in which to discuss prime numbers. In this
context, anything not in P should still be in N. This larger set N is called the
universal set or universe for P .

Most sets in mathematics can be regarded as having some natural universal set.
For instance, the unit circle is the set C =

�

(x, y) 2 R2 : x2+ y2 = 1
 

, and since all
these points are in the plane R2 it is natural to regard R2 as the universal set for
C. In the absence of specifics, if A is a set, then its universal set is often denoted
as U . We are now ready to define the complement operation.

Definition 2.6. Let A be a set with a universal set U .
The complement of A, denoted A, is the set A = U �A.

Example 2.10. If P is the set of prime numbers, then

P = N� P =
�

1, 4, 6, 8, 9, 10, 12, . . .
 

.

Thus P is the set of composite numbers and 1.

Example 2.11. Let A =
�

(x, x2) : x 2 R
 

be the graph of the equation y = x2.
Figure 2.6(a) shows A in its universal set R2. Its complement A = R2 � A =
�

(x, y) 2 R2 : y 6= x2
 

is the shaded area in Figure 2.6(b).

A A

(a) (b)

Fig. 2.6 A set and its complement
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Exercises for Section 2.6

1. Let A=
�
4, 3, 6, 7, 1, 9

 
and B=

�
5, 6, 8, 4

 
have universal set U=

�
0, 1, 2, . . . , 10

 
. Find:

(a) A (b) B (c) A \A

(d) A [A (e) A�A (f) A�B

(g) A�B (h) A \B (i) A \B

2. Let A=
�
0, 2, 4, 6, 8

 
and B=

�
1, 3, 5, 7

 
have universal set U=

�
0, 1, 2, . . . , 8

 
. Find:

(a) A (b) B (c) A \A

(d) A [A (e) A�A (f) A [B

(g) A \B (h) A \B (i) A⇥B

3. Sketch the set X = [1, 3]⇥ [1, 2] on the plane R2. On separate drawings, shade in the
sets X and X \ ([0, 2]⇥ [0, 3]).

4. Sketch the set X = [�1, 3] ⇥ [0, 2] on the plane R2. On separate drawings, shade in
the sets X and X \ ([�2, 4]⇥ [�1, 3]).

5. Sketch the set X =
�
(x, y) 2 R2 : 1  x2 + y2  4

 
on the plane R2. On a separate

drawing, shade in the set X.

6. Sketch the set X =
�
(x, y) 2 R2 : y < x2

 
on R2. Shade in the set X.

2.7 Venn Diagrams

In thinking about sets, it is sometimes helpful to draw informal, schematic diagrams
of them. In doing this we often represent a set with a circle (or oval), which we
regard as enclosing all the elements of the set. Such diagrams can illustrate how
sets combine using various operations. For example, Figures 2.7(a–c) show two sets
A and B that overlap in a middle region. The sets A [ B, A \ B and A � B are
shaded. Such graphical representations of sets are called Venn diagrams, after
their inventor, British logician John Venn, 1834–1923.

A A AB B B

A [B A \B A�B

(a) (b) (c)

Fig. 2.7 Venn diagrams for two sets

Though you may never draw a Venn diagram in writing up the solution of a
problem, you will probably find them to be useful “scratch work” devices that help
you to understand how sets combine, and to develop strategies for proving certain
theorems or solving certain problems. The remainder of this section uses Venn
diagrams to explore how three sets can be combined using [ and \.
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Let’s begin with the set A[B[C. Our definitions suggest this should consist of
all elements which are in one or more of the sets A, B and C. Figure 2.8(a) shows
a Venn diagram for this. Similarly, A\B \C is all elements common to each of A,
B and C, so in Figure 2.8(b) the region belonging to all three sets is shaded.

A AB B

C C

A [B [ C A \B \ C

(a) (b)

Fig. 2.8 Venn diagrams for three sets

We can also think of A \B \ C as the two-step operation (A \B) \ C. In this
expression the set A\B is represented by the region common to both A and B, and
when we intersect this with C we get Figure 2.8(b). This is a visual representation
of the fact that A\B\C = (A\B)\C. Similarly, we have A\B\C = A\(B\C).
Likewise, A [B [ C = (A [B) [ C = A [ (B [ C).

Notice that in these examples, where the expression either contains only the
symbol [ or only the symbol \, the placement of the parentheses is irrelevant, so
we are free to drop them. It is analogous to the situations in algebra involving
expressions (a + b) + c = a + (b + c) or (a · b) · c = a · (b · c). We tend to drop the
parentheses and write simply a+ b+ c or a · b · c. By contrast, in an expression like
(a+ b) · c the parentheses are absolutely essential because (a+ b) · c and a+ (b · c)
are generally not equal.

Now let’s use Venn diagrams to help us understand the expressions (A[B)\C
and A [ (B \ C), which use a mix of [ and \. Figure 2.9 shows how to draw a
diagram for (A [ B) \ C. In the drawing on the left, the set A [ B is shaded with
horizontal lines, while C is shaded with vertical lines. Thus the set (A [ B) \ C is
represented by the cross-hatched region where A[B and C overlap. The superfluous
shadings are omitted in the drawing on the right showing the set (A [B) \ C.

A AB B

C C

Fig. 2.9 How to make a Venn diagram for (A [B) \ C
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Now think about A[ (B\C). In Figure 2.10 the set A is shaded with horizontal
lines, and B \C is shaded with vertical lines. The union A[ (B \C) is represented
by the totality of all shaded regions, as shown on the right.

A AB B

C C

Fig. 2.10 How to make a Venn diagram for A [ (B \ C)

Compare the diagrams for (A[B)\C and A[ (B \C) in Figures 2.9 and 2.10.
The fact that the diagrams are di↵erent indicates that (A [B) \ C 6= A [ (B \ C)
in general. Thus an expression such as A[B \C is absolutely meaningless because
we can’t tell whether it means (A [ B) \ C or A [ (B \ C). In summary, Venn
diagrams have helped us understand the following.

Important Points:
• If an expression involving sets uses only [, then parentheses are optional.

• If an expression involving sets uses only \, then parentheses are optional.

• If an expression uses both [ and \, then parentheses are essential.

In the next section we will study types of expressions that use only [ or only \.
These expressions will not require the use of parentheses.

Exercises for Section 2.7
1. Draw a Venn diagram for A.

2. Draw a Venn diagram for B �A.

3. Draw a Venn diagram for (A�B) \ C.

4. Draw a Venn diagram for (A [B)� C.

5. Draw Venn diagrams for A[ (B\C) and (A[B)\ (A[C). Based on your drawings,
do you think A [ (B \ C) = (A [B) \ (A [ C)?

6. Draw Venn diagrams for A\ (B[C) and (A\B)[ (A\C). Based on your drawings,
do you think A \ (B [ C) = (A \B) [ (A \ C)?

7. Suppose sets A and B are in a universal set U . Draw Venn diagrams for A \B and
A [B. Based on your drawings, do you think it’s true that A \B = A [B?

8. Suppose sets A and B are in a universal set U . Draw Venn diagrams for A [B and
A \B. Based on your drawings, do you think it’s true that A [B = A \B?

9. Draw a diagram for (A\B)�C. 10. Draw a Venn diagram for (A�B) [ C.

Here are Venn diagrams for expressions involving sets A,B and C. Write the expression.

11.

A B

C

12.

A B

C

13.

A B

C

14.

A B

C
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2.8 Indexed Sets

When a mathematical problem involves lots of sets, it is often convenient to keep
track of them by using subscripts (also called indices). Thus instead of denoting
three sets as A,B and C, we might instead write them as A1, A2 and A3. These
are called indexed sets.

Although we defined union and intersection to be operations that combine two
sets, you by now have no di�culty forming unions and intersections of three or
more sets. (For instance, in the previous section we drew Venn diagrams for the
intersection and union of three sets.) But let’s take a moment to write down careful
definitions. Given sets A1, A2, . . . , An

, the set A1 [ A2 [ A3 [ · · · [ A
n

consists of
everything that is in at least one of the sets A

i

. Likewise A1 \ A2 \ A3 \ · · · \
A

n

consists of everything that is common to all of the sets A
i

. Here is a careful
definition.

Definition 2.7.

Suppose A1, A2, . . . , An

are sets. Then

A1 [A2 [A3 [ · · · [A
n

=
�

x : x 2 A
i

for at least one set A
i

, for 1  i  n
 

,

A1 \A2 \A3 \ · · · \A
n

=
�

x : x 2 A
i

for every set A
i

, for 1  i  n
 

.

But if the number n of sets is large, these expressions can get messy. To overcome
this, we now develop some notation akin to sigma notation. You already know that
sigma notation is a convenient symbolism for expressing sums of many numbers.
Given numbers a1, a2, a3, . . . , an, then

n

X

i=1

a
i

= a1 + a2 + a3 + · · ·+ a
n

.

Even if the list of numbers is infinite, the sum

1
X

i=1

a
i

= a1 + a2 + a3 + · · ·+ a
i

+ · · ·

is often still meaningful. The notation we are about to introduce is very similar to
this. Given sets A1, A2, A3, . . . , An

, we define

n

[

i=1

A
i

= A1 [A2 [A3 [ · · · [A
n

and
n

\

i=1

A
i

= A1 \A2 \A3 \ · · · \A
n

.

Example 2.12. Suppose A1 =
�

0, 2, 5
 

, A2 =
�

1, 2, 5
 

and A3 =
�

2, 5, 7
 

. Then

3
[

i=1

A
i

= A1 [A2 [A3 =
�

0, 1, 2, 5, 7
 

and
3
\

i=1

A
i

= A1 \A2 \A3 =
�

2, 5
 

.
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This notation is also used when the list of sets A1, A2, A3, A4 . . . is infinite:

1
[

i=1

A
i

= A1 [A2 [A3 [ · · · =
�

x : x 2 A
i

for at least one set A
i

with 1  i
 

.

1
\

i=1

A
i

= A1 \A2 \A3 \ · · · =
�

x : x 2 A
i

for every set A
i

with 1  i
 

.

Example 2.13. This example involves the following infinite list of sets.

A1 =
�

� 1, 0, 1
 

, A2 =
�

� 2, 0, 2
 

, A3 =
�

� 3, 0, 3
 

, · · · , A
i

=
�

� i, 0, i
 

, · · ·

Observe that
1
[

i=1

A
i

= Z, and
1
\

i=1

A
i

=
�

0
 

.

Here is a useful twist on our new notation. We can write
3
[

i=1

A
i

=
[

i2{1,2,3}

A
i

,

as this takes the union of the sets A
i

for i = 1, 2, 3. Likewise:
3
\

i=1

A
i

=
\

i2{1,2,3}

A
i

1
[

i=1

A
i

=
[

i2N
A

i

1
\

i=1

A
i

=
\

i2N
A

i

Here we’ve taken the union or intersection of a collection of sets A
i

where i is in
some set, be it

�

1, 2, 3
 

or N. In general, the way this works is that we have a
collection of sets A

i

for i 2 I, where I is the set of possible subscripts. The set I is
called an index set.

It is important to realize that the set I need not even consist of integers. (We
could subscript with letters or real numbers, etc.) Since we are programmed to
think of i as an integer, let’s make a slight notational change: We use ↵, not i,
to stand for an element of I. Thus we are dealing with a collection of sets A

↵

for
↵ 2 I. This leads to the following.

Definition 2.8. If A
↵

is a set for every ↵ in some index set I, then
[

↵2I

A
↵

=
�

x : x 2 A
↵

for at least one set A
↵

with ↵ 2 I
 

\

↵2I

A
↵

=
�

x : x 2 A
↵

for every set A
↵

with ↵ 2 I
 

.
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Example 2.14. In this example, all sets A
↵

are all subsets of the plane R2. Each
↵ belongs to the index set I = [0, 2] =

�

x 2 R : 0  x  2
 

, which is the set of
all real numbers between 0 and 2. For each number ↵ 2 I, define A

↵

to be the set
A

↵

= [↵, 2]⇥ [0,↵], which is the rectangle on the xy-plane whose base runs from ↵
to 2 on the x-axis, and whose height is ↵. Some of these are shown shaded below.
(The dotted diagonal line y = x is not a part of any of the sets, but is shown for
clarity, as the upper left corner of each A

↵

touches it.) Note that these sets are
not indexed with just integers. For example, as

p
2 2 I, there is a set Ap

2, which
shown below on the right.

A

↵

↵

A

3

4

3

4

A

1

A

p
2

p
2

↵

3

4

p
2

1 2 1 2 1 2 1 2

1

2

1

2

1

2

1

2

Now consider the infinite union
[

↵2I

A
↵

. It is the shaded triangle shown below,

because any point (x, y) on this triangle belongs to the set A
x

, and is therefore in
the union.

1 2

1

2

[

↵2I

A

↵

Now let’s work out the intersection
\

↵2I

A
↵

. Notice that the point (2, 0) on

the x-axis is the lower right corner of any set A
↵

, so (2, 0) 2 A
↵

for any ↵ 2 I.
Therefore the point (2, 0) is in the intersection of all the A

↵

. But any other point
(x, y) 6= (2, 0) on the triangle does not belong to all of the sets A

↵

. The reason is
that if x < 2, then (x, y) /2 A

↵

for any x < ↵  2. (Check this.) And if x = 2, then
(x, y) /2 A

↵

for any 0 < ↵  y. Consequently

\

↵2I

A
↵

=
�

(2, 0)
 

.

This intersection consists of only one element, the point (2, 0).
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Exercises for Section 2.8

1. Suppose A
1

=
�
a, b, d, e, g, f

 
, A

2

=
�
a, b, c, d

 
, A

3

=
�
b, d, a

 
and A

4

=
�
a, b, h

 
.

(a)
4[

i=1

A
i

= (b)
4\

i=1

A
i

=

2. Suppose

8
<

:

A
1

=
�
0, 2, 4, 8, 10, 12, 14, 16, 18, 20, 22, 24

 
,

A
2

=
�
0, 3, 6, 9, 12, 15, 18, 21, 24

 
,

A
3

=
�
0, 4, 8, 12, 16, 20, 24

 
.

(a)
3[

i=1

A
i

= (b)
3\

i=1

A
i

=

3. For each n 2 N, let A
n

=
�
0, 1, 2, 3, . . . , n

 
.

(a)
[

i2N
A

i

= (b)
\

i2N
A

i

=

4. For each n 2 N, let A
n

=
�
� 2n, 0, 2n

 
.

(a)
[

i2N
A

i

= (b)
\

i2N
A

i

=

5. (a)
[

i2N
[i, i+ 1] = (b)

\

i2N
[i, i+ 1] =

6. (a)
[

i2N
[0, i+ 1] = (b)

\

i2N
[0, i+ 1] =

7. (a)
[

i2N
R⇥ [i, i+ 1] = (b)

\

i2N
R⇥ [i, i+ 1] =

8. (a)
[

↵2R

�
↵
 
⇥ [0, 1] = (b)

\

↵2R

�
↵
 
⇥ [0, 1] =

9. (a)
[

X2P(N)
X = (b)

\

X2P(N)
X =

10. (a)
[

x2[0,1]

[x, 1]⇥ [0, x2] = (b)
\

x2[0,1]

[x, 1]⇥ [0, x2] =

11. Is
\

↵2I

A
↵

✓
[

↵2I

A
↵

always true for any collection of sets A
↵

with index set I?

12. If
\

↵2I

A
↵

=
[

↵2I

A
↵

, what do you think can be said about the relationships between

the sets A
↵

?

13. If J 6= ; and J ✓ I, is it true that
[

↵2J

A
↵

✓
[

↵2I

A
↵

? What about
\

↵2J

A
↵

✓
\

↵2I

A
↵

?

14. If J 6= ; and J ✓ I, does it follow that
\

↵2I

A
↵

✓
\

↵2J

A
↵

? Explain.
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2.9 Sets that Are Number Systems

In practice, the sets we tend to be most interested in often have special properties
and structures. For example, the sets Z, Q and R are familiar number systems:
Given such a set, any two of its elements can be added (or multiplied, etc.) to-
gether to produce another element in the set. These operations obey the familiar
commutative, associative and distributive properties that we have dealt with for
years. Such properties lead to the standard algebraic techniques for solving equa-
tions. Even though much of this book will be concerned with the idea of proof, we
will not find it necessary to define or prove these properties and techniques; we will
accept them as the ground rules upon which further deductions are based.

We also accept as fact the natural ordering of the elements of N,Z,Q and R,
so that (for example) the meaning of “5 < 7” is understood and does not need to
be justified or explained. Similarly, if x  y and a 6= 0, we know that ax  ay or
ax � ay, depending on whether a is positive or negative.

Another thing that our ingrained understanding of the ordering of numbers tells
us is that any non-empty subset of N has a smallest element. In other words, if
A ✓ N and A 6= ;, then there is an element x0 2 A that is smaller than every
other element of A. (To find it, start at 1, then move in increments to 2, 3, 4, etc.,
until you hit a number x0 2 A; this is the smallest element of A.) Similarly, given
an integer b, any non-empty subset A ✓

�

b, b+ 1, b+ 2, b+ 3, . . .
 

has a smallest
element. This fact is sometimes called the well-ordering principle. There is no
need to remember this term, but do be aware that we will use this simple, intuitive
idea often in proofs, usually without a second thought.

The well-ordering principle seems innocent enough, but it actually says some-
thing very fundamental and special about the positive integers N. In fact, the
corresponding statement about the positive real numbers is false: The subset
A =

�

1
n

: n 2 N
 

of the positive reals has no smallest element because for any
x0 = 1

n

2 A that we might pick, there is always a smaller element 1
n+1 2 A.

Despite the fact that we will scarcely mention it again in this book, the well-
ordering principle plays a fundamental role in discrete mathematics. For example,
imagine a loop in a computer program that continues to execute as long as some
integer value x is positive. If each iteration of the loop decreases the value of x, then
it is the well-ordering principle that assures us that the loop eventually terminates.
This is because the set A of all values that x takes on is a subset of N and therefore
has a smallest element, namely the value of x in the last iteration of the loop.

2.10 Case Study: Russell’s Paradox

This section contains some background information that may be interesting, but is
not used in the remainder of the book.

The philosopher and mathematician Bertrand Russell (1872–1970) did ground-
breaking work on the theory of sets and the foundations of mathematics. He was
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probably among the first to understand how the misuse of sets can lead to bizarre
and paradoxical situations. He is famous for an idea that has come to be known as
Russell’s paradox.

Russell’s paradox involves the following set of sets:

A =
�

X : X is a set and X /2 X
 

. (2.1)

In words, A is the set of all sets that do not include themselves as elements. Most
sets we can think of are in A. The set Z of integers is not an integer (i.e., Z /2 Z)
and therefore Z 2 A. Also ; 2 A because ; is a set and ; /2 ;.

Is there a set that is not in A? Consider B =
����

. . .
    

. Think of B as a
box containing a box, containing a box, containing a box, and so on, forever. Or a
set of Russian dolls, nested one inside the other, endlessly. The curious thing about
B is that it has just one element, namely B itself:

B =
� ���

. . .
   

| {z }

B

 

.

Thus B 2 B. As B does not satisfy B /2 B, Equation (2.1) says B /2 A.
Russell’s paradox arises from the question “Is A an element of A?”
For a set X, Equation (2.1) says X 2 A means the same thing as X /2 X.

So for X = A, the previous line says A 2 A means the same thing as A /2 A.
Conclusion: if A 2 A is true, then it is false; if A 2 A is false, then it is true. This
is Russell’s paradox.

Initially Russell’s paradox sparked a crisis among mathematicians. How could
a mathematical statement be both true and false? This seemed to be in opposition
to the very essence of mathematics.

The paradox instigated a very careful examination of set theory and an eval-
uation of what can and cannot be regarded as a set. Eventually mathematicians
settled upon a collection of axioms for set theory—the so-called Zermelo-Fraenkel
axioms. One of these axioms is the well-ordering principle of the previous section.
Another, the axiom of foundation, states that no non-empty set X is allowed to
have the property X \ x 6= ; for all its elements x. This rules out such circularly
defined “sets” as B =

�

B
 

mentioned above. If we adhere to these axioms, then
situations like Russell’s paradox disappear. Most mathematicians accept all this on
faith and happily ignore the Zermelo-Fraenkel axioms. Paradoxes like Russell’s do
not tend to come up in everyday mathematics—you have to go out of your way to
construct them.

Still, Russell’s paradox reminds us that precision of thought and language is an
important part of doing mathematics. The next chapter deals with the topic of
logic, a codification of thought and language.
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Solutions for Chapter 2

Section 2.1

1. {5x� 1 : x 2 Z} = {. . .� 11,�6,�1, 4, 9, 14, 19, 24, 29, . . .}
3. {x 2 Z : �2  x < 7} = {�2,�1, 0, 1, 2, 3, 4, 5, 6}
5.

�
x 2 R : x2 = 3

 
=
�
�
p
3,
p
3
 

7.
�
x 2 R : x2 + 5x = �6

 
= {�2,�3}

9. {x 2 R : sin⇡x = 0} = {. . . ,�2,�1, 0, 1, 2, 3, 4, . . .} = Z
11. {x 2 Z : |x| < 5} = {�4,�3,�2,�1, 0, 1, 2, 3, 4}
13. {x 2 Z : |6x| < 5} = {0}
15. {5a+ 2b : a, b 2 Z} = {. . . ,�2,�1, 0, 1, 2, 3, . . .} = Z
17. {2, 4, 8, 16, 32, 64 . . .} = {2x : x 2 N}
19. {. . . ,�6,�3, 0, 3, 6, 9, 12, 15, . . .} = {3x : x 2 Z}
21. {0, 1, 4, 9, 16, 25, 36, . . .} =

�
x2 : x 2 Z

 

23. {3, 4, 5, 6, 7, 8} = {x 2 Z : 3  x  8} = {x 2 N : 3  x  8}
25.

�
. . . , 1

8

, 1

4

, 1

2

, 1, 2, 4, 8, . . .
 
= {2n : n 2 Z}

27.
�
. . . ,�⇡,�⇡

2

, 0, ⇡

2

,⇡, 3⇡

2

, 2⇡, 5⇡

2

, . . .
 
=
�

k⇡

2

: k 2 Z
 

29. |{{1} , {2, {3, 4}} , ;}| = 3
31. |{{{1} , {2, {3, 4}} , ;}}| = 1
33. |{x 2 Z : |x| < 10}| = 19
35. |

�
x 2 Z : x2 < 10

 
| = 7

37. |
�
x 2 N : x2 < 0

 
| = 0

Section 2.2

1. Suppose A = {1, 2, 3, 4} and B = {a, c}.

(a) A⇥B = {(1, a), (1, c), (2, a), (2, c), (3, a), (3, c), (4, a), (4, c)}

(b) B ⇥A = {(a, 1), (a, 2), (a, 3), (a, 4), (c, 1), (c, 2), (c, 3), (c, 4)}

(c) A⇥A = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4),
(3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)}

(d) B ⇥B = {(a, a), (a, c), (c, a), (c, c)}

(e) ; ⇥B = {(a, b) : a 2 ;, b 2 B} = ; (There are no pairs (a, b) with a 2 ;.)

(f) (A⇥B)⇥B =
{((1, a), a), ((1, c), a), ((2, a), a), ((2, c), a), ((3, a), a), ((3, c), a), ((4, a), a), ((4, c), a),
((1, a), c), ((1, c), c), ((2, a), c), ((2, c), c), ((3, a), c), ((3, c), c), ((4, a), c), ((4, c), c)}

(g) A⇥ (B ⇥B) =�
(1, (a, a)), (1, (a, c)), (1, (c, a)), (1, (c, c)),
(2, (a, a)), (2, (a, c)), (2, (c, a)), (2, (c, c)),
(3, (a, a)), (3, (a, c)), (3, (c, a)), (3, (c, c)),
(4, (a, a)), (4, (a, c)), (4, (c, a)), (4, (c, c))

 

(h) B3 = {(a, a, a), (a, a, c), (a, c, a), (a, c, c), (c, a, a), (c, a, c), (c, c, a), (c, c, c)}

3.
�
x2R:x2=2

 
⇥ {a, c, e}=

�
(�

p
2, a), (

p
2, a), (�

p
2, c), (

p
2, c), (�

p
2, e), (

p
2, e)

 

5.
�
x 2 R : x2 = 2

 
⇥ {x 2 R : |x| = 2} =

�
(�

p
2,�2), (

p
2, 2), (�

p
2, 2), (

p
2,�2)
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7. {;}⇥ {0, ;}⇥ {0, 1} = {(;, 0, 0), (;, 0, 1), (;, ;, 0), (;, ;, 1)}

Sketch the following Cartesian products on the x-y plane.

9. {1, 2, 3}⇥ {�1, 0, 1}

�3 �2 �1 1 2 3

�2

�1

1

2

11. [0, 1]⇥ [0, 1]

�3 �2 �1 1 2 3

�2

�1

1

2

13. {1, 1.5, 2}⇥ [1, 2]

�3 �2 �1 1 2 3
�1

1

2

15. {1}⇥ [0, 1]

�3 �2 �1 1 2 3
�1

1

2

17. N⇥ Z

�3 �2 �1 1 2 3

�2

�1

1

2

19. [0, 1]⇥ [0, 1]⇥ [0, 1]

�3 �2 �1 1 2 3

�2

�1

1

2

Section 2.3

A. List all the subsets of the following sets.

1. The subsets of {1, 2, 3, 4} are: {}, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4},
{2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}.

3. The subsets of {{R}} are: {} and {{R}}.

5. The subsets of {;} are {} and {;}.

7. The subsets of {R, {Q,N}} are {}, {R},{{Q,N}}, {R, {Q,N}}.

B. Write out the following sets by listing their elements between braces.

9. {X : X ✓ {3, 2, a} and |X| = 2} = {{3, 2} , {3, a} , {2, a}}

11. {X : X ✓ {3, 2, a} and |X| = 4} = {} = ;

C. Decide if the following statements are true or false.

13. R3 ✓ R3 is true because any set is a subset of itself.

15.
�
(x, y) : x � 1 = 0

 
✓

�
(x, y) : x2 � x = 0

 
. This is true. (The even-

numbered ones are both false. You have to explain why.)
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Section 2.4

A. Find the indicated sets.

1. P({{a, b} , {c}}) = {;, {{a, b}} , {{c}} , {{a, b} , {c}}}

3. P({{;} , 5}) = {;, {{;}} , {5} , {{;} , 5}}

5. P(P({2})) = {;, {;} , {{2}} , {;, {2}}}

7. P({a, b})⇥ P({0, 1}) =�
(;, ;), (;, {0}), (;, {1}), (;, {0, 1}),

({a} , ;), ({a} , {0}), ({a} , {1}), ({a} , {0, 1}),
({b} , ;), ({b} , {0}), ({b} , {1}), ({b} , {0, 1}),

({a, b} , ;), ({a, b} , {0}), ({a, b} , {1}), ({a, b} , {0, 1})
 

9. P({a, b}⇥ {0}) = {;, {(a, 0)} , {(b, 0)} , {(a, 0), (b, 0)}}

11. {X ✓ P({1, 2, 3}) : |X|  1} =
{;, {;} , {{1}} , {{2}} , {{3}} , {{1, 2}} , {{1, 3}} , {{2, 3}} , {{1, 2, 3}}}

B. Suppose that |A| = m and |B| = n. Find the following cardinalities.

13. |P(P(P(A)))| = 2
⇣
2

(2

m

)

⌘

15. |P(A⇥B)| = 2mn

17. |{X 2 P(A) : |X|  1}| = m+ 1

19. |P(P(P(A⇥ ;)))| = |P(P(P(;)))| = 4

Section 2.5

1. Suppose A = {4, 3, 6, 7, 1, 9}, B = {5, 6, 8, 4} and C = {5, 8, 4} . Find:
(a) A [B = {1, 3, 4, 5, 6, 7, 8, 9} (b) A \B = {4, 6}
(c) A�B = {3, 7, 1, 9} (d) A� C = {3, 6, 7, 1, 9}
(e) B �A = {5, 8} (f) A \ C = {4}
(g) B \ C = {5, 8, 4} (h) B [ C = {5, 6, 8, 4}
(i) C �B = ;

3. Suppose A = {0, 1} and B = {1, 2}. Find:

(a) (A⇥B) \ (B ⇥B) = {(1, 1), (1, 2)}

(b) (A⇥B) [ (B ⇥B) = {(0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2)}
(c) (A⇥B)�(B⇥B)= {(0, 1), (0, 2)} (d) (A \B)⇥A = {(1, 0), (1, 1)}
(e) (A⇥B) \B = ; (f) P(A) \ P(B) = {;, {1}}
(g) P(A)� P(B) = {{0} , {0, 1}} (h) P(A \B) = {{} , {1}}

(i)
�
;, {(0, 1)}, {(0, 2)}, {(1, 1)}, {(1, 2)}, {(0, 1), (0, 2)}, {(0, 1), (1, 1)},

{(0, 1), (1, 2)}, {(0, 2), (1, 1)}, {(0, 2), (1, 2)}, {(1, 1), (1, 2)},
{(0, 2), (1, 1), (1, 2)}, {(0, 1), (1, 1), (1, 2)}, {(0, 1), (0, 2), (1, 2)},
{(0, 1), (0, 2), (1, 1)}, {(0, 1), (0, 2), (1, 1), (1, 2)}

 

5. Sketch the sets X = [1, 3] ⇥ [1, 3] and Y = [2, 4] ⇥ [2, 4] on the plane R2. On
separate drawings, shade in the sets X [ Y , X \ Y , X � Y and Y �X.
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Y

X

X [ Y

X \ Y

X � Y

Y � X

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

Section 2.6

1. Suppose A = {4, 3, 6, 7, 1, 9} and B = {5, 6, 8, 4} have universal set U =
{n 2 Z : 0  n  10}.
(a) A = {0, 2, 5, 8, 10} (b) B = {0, 1, 2, 3, 7, 9, 10}
(c) A \A = ; (d) A [A = U

(e) A�A = A (f) A�B = {4, 6}
(g) A�B = {5, 8} (h) A \B = {5, 8}

(i) A \B = {0, 1, 2, 3, 4, 6, 7, 9, 10}

3. Sketch the set X = [1, 3] ⇥ [1, 2] on the plane R2. On separate drawings, shade
in the sets X, and X \ ([0, 2]⇥ [0, 3]).

X

X

X \ ([0, 2] ⇥ [0, 3])
�1 1 2 3
�1

1

2

3

�1 1 2 3
�1

1

2

3

�1 1 2 3
�1

1

2

3

5. Sketch the set X =
�
(x, y) 2 R2 : 1  x2 + y2  4

 
on the plane R2. On a sepa-

rate drawing, shade in the set X.

X

X

1 2 3

1

2

3

1 2 3

1

2

3

Solution of 2.6, #5.

A

A (shaded)

U

Solution of 2.7, #1.

Section 2.7

1. Draw a Venn diagram for A. (Solution above right)

3. Draw a Venn diagram for (A�B) \ C.
Scratch work is shown on the right. The set A�B
is indicated with vertical shading. The set C is in-
dicated with horizontal shading. The intersection
of A�B and C is thus the overlapping region that
is shaded with both vertical and horizontal lines.
The final answer is drawn on the far right, where
the set (A�B) \ C is shaded in gray. A AB B

C C
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5. Draw Venn diagrams for A [ (B \ C) and (A [ B) \ (A [ C). Based on your
drawings, do you think A [ (B \ C) = (A [B) \ (A [ C)?

If you do the drawings carefully, you will find that your
Venn diagrams are the same for both A[ (B \C) and
(A [ B) \ (A [ C). Each looks as illustrated on the
right. Based on this, we are inclined to say that the
equation A [ (B \ C) = (A [ B) \ (A [ C) holds for
all sets A, B and C. A B

C

7. Suppose sets A and B are in a universal set U . Draw Venn diagrams for A \B
and A[B. Based on your drawings, do you think it’s true that A \B = A[B?

The diagrams for A \B and A[B look exactly alike.
In either case the diagram is the shaded region illus-
trated on the right. Thus we would expect that the
equation A \B = A[B is true for any sets A and B.

A B

U

9. Draw a Venn diagram for (A \B)� C.

A B

C

11. The simplest answer is (B \ C)�A.

13. One answer is (A [B [ C)� (A \B \ C).

Section 2.8

1. Suppose A
1

= {a, b, d, e, g, f}, A
2

= {a, b, c, d}, A
3

= {b, d, a} and A
4

= {a, b, h}.

(a)
4[

i=1

A
i

= {a, b, c, d, e, f, g, h} (b)
4\

i=1

A
i

= {a, b}

3. For each n 2 N, let A
n

= {0, 1, 2, 3, . . . , n}.
(a)

[

i2N
A

i

= {0} [ N (b)
\

i2N
A

i

= {0, 1}

5. (a)
[

i2N
[i, i+ 1] =[1,1) (b)

\

i2N
[i, i+ 1] =;

7. (a)
[

i2N
R⇥ [i, i+ 1] = {(x, y) : x, y 2 R, y � 1} (b)

\

i2N
R⇥ [i, i+ 1] = ;

9. (a)
[

X2P(N)
X = N (b)

\

X2P(N)
X = ;

11. Yes, this is always true.

13. The first is true, the second is false.


