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Chapter 8

Algorithms

The idea of an algorithm is of fundamental importance in computer science and
discrete mathematics. Broadly speaking, an algorithm is a sequence of commands
that, if followed, results in some desirable outcome. In this sense a recipe for baking
a cake is an algorithm. If you follow the instructions you get a cake. A typical
algorithm has what we call input, that is, material or data that the algorithm uses,
and output, which is the end result of the algorithm. In following the recipe for a
cake, the ingredients are the input. The recipe (algorithm) tells what to do with
the ingredients, and the output is a cake.

For another example, the instructions for making an origami swan from a piece
of paper is an algorithm. The input is the paper, the algorithm is a sequence of
instructions telling how to fold the paper, and the output is a paper swan. Di↵erent
input (color, size, etc.) leads to di↵erent output.

To run or execute an algorithm means to apply it to input and obtain output.
Running or executing the swan algorithm produces a swan as output. We freely use
the words “input” and “output” as both nouns and a verbs. The algorithm inputs
a piece of paper and outputs a swan.

Today the word “algorithm” almost always refers to a sequence of steps written
in a computer language and executed by a computer, and the input and output
are information or data. Doing a Google search causes an algorithm to run. The
“Google Algorithm” takes as input a word or phrase, and outputs a list of web
pages that contain the word or phrase. When we do a Google search we type in the
input. Pressing the Return key causes the algorithm to run, and then the output
is presented on the screen.

Running such an algorithm is e↵ortless because the computer does all the steps.
But someone (actually, a group of people) designed and implemented it, and this
required very specialized knowledge and skills. This chapter is an introduction to
these skills. Though our treatment is elementary, the ideas presented here—if taken
further—can be applied to designing quite complex and significant algorithms.

In practice, algorithms may have complex “feedback” relationships between in-
put and output. Input might involve our clicking on a certain icon or button, and
based on this choice the algorithm might prompt us to enter further information,
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or even upload files. Output could be as varied as an email sent to some recipient
or an object produced by a 3D printer.

For simplicity we will concentrate on algorithms that simply start with input
information, act on it, and produce output information at the end. To further
simplify our discussion, the input and output information will be mostly numeric or
alphanumeric. This is not as limiting as it may sound. Any algorithm—no matter
how complex—can be decomposed into such simple “building-block algorithms.”

Although all of our algorithms could be implemented on a computer, we will
not express them in any particular computer language. Instead we will develop a
kind of pseudocode that has the basic features of any high-level computer language.
Understanding this pseudocode will make mastering any computer language easier.
Conversely, if you already know a programming language, then you may find this
chapter relatively easy reading.

Our exploration begins with variables.

8.1 Variables and the Assignment Command

In an algorithm, a variable is a symbol that can be assigned various values. As
in algebra, we use letters a, b, c, . . . , z as variables. If convenient, we may subscript
our variables, so x1, x2 and x3 are three di↵erent variables.

Often words or their abbreviations are used as variables. For example, a variable
rad could represent the radius of a circle.

Though there is no harm in thinking of a variable as a name or symbol that
represents a number, in programming languages a variable actually represents a
location in the computer’s memory that can hold di↵erent quantities (i.e., values)
at di↵erent times. But it can hold only one value at any specific time. As an
algorithm runs, it can assign various values to a variable at di↵erent points in time.

An algorithm is a sequence of instructions or commands. The command that
says the variable x is to be assigned the value of 2 is expressed as

x := 2,

which we read as “x is assigned the value 2” or “x gets 2.” Once this command is
executed, the memory location x holds the value 2, at least until it is assigned some
other value. We can think of x as standing for the number 2. If a later command is

x := 7,

then x stands for the value 7. If the next command in the algorithm is

y := 2 · x+ 1,

then the variable y stands for the number 15. If the next command is

y := y + 2,

then y gets the value 15 + 2 = 17.



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 205

Algorithms 205

In the context of algorithms, the term variable has a slightly di↵erent meaning
than in algebra. In an algorithm a variable represents a specific value at any point in
time, and that value can change over time. But in algebra a variable is a (possibly)
indefinite quantity. The di↵erence is highlighted in the algorithm command y :=
y+2, which means y gets a new value that is its previous value plus 2. By contrast,
in algebra the equation y = y + 2 has no solution.

In an algorithm there is a di↵erence between y := 2 and y = 2. In an algorithm,
an expression like y = 2 is interpreted as an open sentence that is either true or false.
Suppose an algorithm issues the command y := 2. Then, afterwards, the expression
y = 2 has the value True (T ), and y = 3 has the value False (F ). Similarly, y = y+2
is F , no matter the value of y.

8.2 Loops and Algorithm Notation

Programming languages employ certain kinds of loops that execute sequences of
commands multiple times. One of the most basic kinds of loops is called a while
loop. It is a special command to execute a sequence of commands as long as (or
while) an open sentence P (x) involving some variable x is true. A while loop has
the following structure. It begins with the word while and ends with the word end,
and between these two words is a sequence of commands. The vertical bar is just a
visual reminder that the commands are all grouped together within the while loop.

while P (x) do
Command 1
Command 2

...
Command n

end

When the while loop begins running, the variable x has a certain value. If P (x)
is true, then the while loop executes Commands 1 through n, which may change
the value of x. Then, if P (x) is still true the loop executes Commands 1 through n
again. It continues to execute Commands 1 through n until P (x) is false. At that
point the loop is finished and the algorithm moves on to whatever command comes
after the while loop.

The first time the while loop executes the list of commands is called the first
iteration of the loop. The second time it executes them is called the second
iteration, and so on.

In summary, the while loop executes the sequence of commands 1–n over and
over until P (x) is false. If it happens that P (x) is already false when the while loop
begins, then the while loop does nothing.

Let’s look at some examples. These will use the command output x, which
outputs whatever value x has when the command is executed.
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Consider the while loop on the right, after the
line x := 1. It assigns y := 2 ·x, outputs y, replaces x
with x+1, and continues doing this as long as x  6.
We can keep track of this with a table. After the
first iteration of the loop, we have y = 2 · 1 = 2 and
x = 1+1 = 2, as shown in the table. In any successive
iteration, y is twice what x was at the end of the
previous iteration, and x is one more than it was, as
reflected in the table. At the end of the 6th iteration,
x = 7, so x  6 is no longer true, so the loop makes
no further iterations. From the table we can see that
the output is the list of numbers 2, 4, 6, 8, 10, 12

x := 1
while x  6 do

y := 2 · x
output y
x := x+ 1

end

iteration 1 2 3 4 5 6

x 2 3 4 5 6 7

y 2 4 6 8 10 12

Now let’s tweak this example slightly by moving
the output command from inside the loop, to after
it, as shown on the right. This time there is no output
until the while loop has finished. The table still ap-
plies, and it shows that y = 12 after the last iteration,
so the output is the single number 12.

x := 1
while x  6 do

y := 2 · x
x := x+ 1

end
output y

Next, consider the example on the right. It is
just the same as the previous example, except it has
x := x� 1 instead of x := x+ 1. Thus x gets smaller
with each iteration, and x  6 is always true, so the
while loop continues forever, never stopping. This is
what is called an infinite loop.

x := 1
while x  6 do

y := 2 · x
x := x� 1

end
output y

Ideally, an algorithm is a set of commands that completes a task in a finite
number of steps. Therefore infinite loops are to be avoided. The potential for an
infinite loop is seen as a mistake or flaw in an algorithm.

Now that we understand assignment commands and while loops, we can begin
writing some complete algorithms. For clarity we will use a systematic notation. An
algorithm will begin with a header with the word “Algorithm,” followed by a brief
description of what the algorithm does. Next, the input and the output is described.
Finally comes the body of the algorithm, a list of commands enclosed between the
words begin and end. For clarity we write one command per line. We may insert
comments on the right margin, preceded by a row of dots. These comments are to
help a reader (and sometimes the writer!) understand how the algorithm works;
they are not themselves commands. (If the algorithm were written in a computer
language and run on a computer, the computer would ignore the comments.)

To illustrate this, here is an algorithm whose input is a positive integer n, and
whose output is the first n positive even integers. If, for example, the input is 6, the
output is the list 2, 4, 6, 8, 10, 12. (Clearly this is not the most impressive algorithm.
It is intentionally simple because its purpose is to illustrate algorithm commands
and notation.)
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Algorithm 1: computes the first n positive even integers

Input: A positive integer n (Tells reader what the
Output: The first n positive even integers input & output is.)
begin

x := 1
while x  n do

y := 2 · x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y is the xth even integer
output y
x := x+ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . increase x by 1

end
end

In addition to while loops, most programming languages feature a so-called for
loop, whose syntax follows. Here i is a variable, and m,n are integers with m  n.

for i := m to n do
Command

...
Command

end

In its first iteration the for loop sets i := m, and executes the list of commands.
In the next iteration it sets i := m+ 1 and executes the commands again. Then it
sets i := m+ 2, executes the commands, and so on. Each iteration increases i by 1
and executes the commands. In the final iteration, i := n and the commands are
executed a final time. None of the commands can alter i, m and n.

To illustrate this, let’s rewrite Algorithm 1 with a for loop.

Algorithm 2: computes the first n positive even integers

Input: A positive integer n
Output: The first n positive even integers
begin

for i := 1 to n do
output 2 · i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y is the ith even integer

end

end

Sometimes in a for loop, we want m � n, and for i to decrease from m to n. For
this we allow the following construction, which is like the usual for loop except that
the to is replaced by downto. Here i decreases from m to n in increments of 1.

for i := m downto n do
Command

...
Command

end
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8.3 Logical Operators in Algorithms

There is an inseparable connection between algorithms and logic. A while loop
continues to execute as long as some boolean expression P (x) is true. This boolean
expression may have involve multiple variables and logical operators. For example,
the following loop executes the list of commands as long as P (x) _ ¬Q(y) is true.

while P (x) _ ¬Q(y) do
Command

...
end

The list of commands must change the values of x or y, so P (x)_¬Q(y) is eventually
false, or otherwise we will be stuck in an infinite loop.

Another way that algorithms can employ logic is with what is known as the
if-then construction. Its syntax is as follows.

if P (x) then
Command

...
end

If P (x) is true, then this executes the list of commands between the then and the
end. If P (x) is false it does nothing, and the algorithm continues on to whatever
commands come after the closing end. Of course the open sentence P (x) could also
be a compound sentence like P (x) _ ¬Q(y), etc.

A variation on the if-then command is the if-then-else command, shown below.
If P (x) is true, the commands between the then and the else are executed. But ir
P (x) is false, then the commands between the else and the end are run.

if P (x) then
Command

...
else

Command
...

end

Let’s use these new ideas to write an algorithm whose input is n and whose
output is n!. Recall that if n = 0, then n! = 1 and otherwise n! = 1·2·3·4· · ·n. Thus
our algorithm should have the following structure.

if n = 0 then
output 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because 0! = 1

else
Compute y := n! . . . . . . . . . . . . . . . . . (we need to add the lines that do this)
output y

end
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To finish it, we need to add in the lines that compute y = 1·2·3·4· · ·n. We do this
by first setting y = 1 and then use a for loop to multiply y by 1, then by 2, then
by 3, and so on, up to a final multiplication by n.

Algorithm 3: computes n!

Input: A non-negative integer n
Output: n!
begin

if n = 0 then
output 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because 0! = 1

else
y := 1
for i := 1 to n do

y := y · i
end
output y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because now y = n!

end

end

8.4 Lists and Sorting

Lists often occur in algorithms. A list typically has multiple entries, so when stored
in a computer’s memory it’s not stored in single memory location, but rather mul-
tiple locations. A list such as X = (2, 4, 7, 4, 3), of length five, might be stored in
six successive locations, with the first one (called X) containing the length of X:

X x1 x2 x3 x4 x5

5 2 4 7 4 3 (8.1)

The memory location X contains the number 5, which indicates that the next
five locations store the five entries of the list X. We denote by x1 the location
immediately following X, and the one after that is x2, and so on.

With this convention, we can regard X = x0 as a special location that holds the
length of the list (x1, x2, . . .) that follows it. (So a list’s length is always a known
quantity that is immediately accessible without counting.)

If an algorithm issues the command X := (2, 4, 7, 4, 3), it has created a list with
first entry x1 = 2 , second entry x2 = 4, and so on, that might be stored in a
computer’s memory in the format (8.1) above. If a later command is (say) x3 := 1,
then we have X = (2, 4, 1, 4, 3). If we then issued the for loop

for i := 2 to 5 do
xi := 0

end

the list becomes X = (4, 0, 0, 0, 0), etc.
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We use uppercase letters to denote lists, while their entries are denoted by a
same letter in lowercase, subscripted. Thus if A = (7, 6, 5, 4, 3, 2, 1), then a1 = 7,
a2 = 6, etc. The command X := A results in X = (7, 6, 5, 4, 3, 2, 1).

The next algorithm illustrates these ideas. It finds the largest entry of a list.
We will deviate from our tendency to use letters to stand for variables, and use the
word biggest as a variable. The algorithm starts by setting biggest equal to the first
list entry. Then it traverses the list, replacing biggest with any larger entry it finds.

Algorithm 4: finds the largest entry of a list

Input: A list X = (x1, x2, . . . , xn)
Output: The largest entry in the list
begin

biggest := x1 . . . . . . . . . . . . . . . . . . . . . . . this is the largest value found so far
for i := 1 to n do

if biggest < xi then
biggest := xi . . . . . . . . . . . . . . . . this is the largest value found so far

end

end
output biggest

end

The next example is an algorithm that reverses a list. For instance, if its input
is (1, 2, 6, 4) the output is (4, 6, 2, 1). It uses the idea that if X is reversed, then
entries xi and xn+1�i are swapped, for each 1  i  n, as illustrated below.

x1 xi xn+1�i xnxbn/2c

The algorithm runs through the first half of the list. For each such entry i, it
stores the value of xi in a temporary variable temp, overwrites xi with xn+1�i, and
then assigns temp to xn+1�i, thereby swapping the values xi and xn+1�i.

Algorithm 5: puts a list in reverse order

Input: A list X = (x1, x2, . . . , xn) of length n
Output: The reverse of X
begin

for i := 1 to bn/2c do
temp = xi

xi := xn+1�i

xn+1�i := temp
end
output X

end
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Next we create an algorithm that sorts a list into numerical order. For example,
if the input is X = (4, 5, 1, 2, 1, 3), the output will be X = (1, 1, 2, 3, 4, 5). To
illustrate the idea, take a very disordered list X = (5, 4, 3, 2, 1). Starting at the
first entry, it and the second entry are out of order, so swap them to get a new list
X = (4, 5, 3, 2, 1), shown on the second row of the diagram below. Then move to
the second entry of this new X. It and the third entry are out of order, so swap
them. Now X = (4, 3, 5, 2, 1) as on the third row below. Continue, in this pattern,
moving left to right. For this particular list, four swaps occur.

5

5

5

5

5

4

4

4

4

3

3

3

2

2

4

1

3

3

2

2

2

1

1

1

1

9
>>>>>>>>=

>>>>>>>>;

1st pass, 4 swaps

Now the last entry is in correct position, but those to its left are not. Make a
second pass through the list, swapping any out-of-order pairs. But we can stop just
before reaching the last entry, as it is placed correctly:

4

4

4

4

3

3

3

2

2 1

3 2

2

1

1

1

5

5

5

5

9
>>>>>>=

>>>>>>;

2nd pass, 3 swaps

Now the last two entries are in their correct places. Make another pass through
the list, this time stopping two positions from the left:

3

3

3

2

2 1

2 1

1

4

4

4

5

5

5

9
>>=

>>;
3rd pass, 2 swaps

Now the last three entries are correct. We need only swap the first two.

2

21

1 3

3

4

4

5

5

)
4th pass, 1 swap

This final list is in numeric order. Note that in this example the input list
X = (5, 4, 3, 2, 1) was totally out of order, and we had two swap every pair we
encountered. In general, if a pair happens not to be out of order, we simply don’t
swap it. Our next algorithm implements this plan.
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In sorting the example list of length n = 5 on the previous page, we made n� 1
passes through the list. In the kth pass, we compared and swapped n�k consecutive
pairs of list entries (one less swap for each pass).

Pass #1 compared and swapped the first n� 1 consecutive pairs of list entries.
Pass #2 compared and swapped the first n� 2 consecutive pairs of list entries.
Pass #3 compared and swapped the first n� 3 consecutive pairs of list entries.

...
Pass #(n�1) compared and swapped the first 1 consecutive pair of list entries.

Our algorithm mimics this pattern with a for loop letting k run from n�1 down
to 1. Inside this loop is another for loop that iterates from 1 to k, and, on the ith
iteration, comparing xi to xi+1 and swapping if the first is larger than the second.

Algorithm 6: (Bubble Sort) sorts a list

Input: A list X = (x1, x2, . . . , xn) of numbers
Output: The list sorted into numeric order
begin

for k := n� 1 downto 1 do
for i := 1 to k do

if xi > xi+1 then
temp := xi . . . . . . . . . . . . . . . . . . . . . . temporarily holds value of xi

xi := xi+1

xi+1 := temp . . . . . . . . . . . . . . . . . . . now xi and xi+1 are swapped
end

end

end
output X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . now X is sorted

end

Computer scientists call Algorithm 6 the bubble sort algorithm, because
smaller numbers “bubble up” to the front of the list. It is not the most e�cient
sorting algorithm, but it works. (Chapter 21 introduces another sorting algorithm,
called merge sort, that expends far fewer steps than bubble sort).

Algorithm 6 has a for loop inside of another for loop. In programming, loops
inside of loops are said to be nested. Nested loops are very common.

For full disclosure, Algorithm 6 has a minor flaw. You may have noticed it.
What if the input list had length n = 1, like X = (3)? Then the first for loop would
try to execute “for k := 0 downto 1 do.” This makes no sense, or could lead to
an infinite loop. The same problem happens if X is the empty list. It would be
easy to insert an if-else statement to handle this, but in the interest of simplicity
(and pedagogy) we did not. The purpose of our Algorithm 6 is just to illustrate the
idea of bubble sort, and not to sort any real-life lists. But professional programmers
must be absolutely certain that their algorithms are robust enough to handle any
input.
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Exercises for Sections 8.1–8.4

1. Find the output.

x := 1
y := 10
while x2 < y do

y := y + x
x := x+ 1

end

output x
output y

2. Find the output.

s := 0
t := 0
for i := 1 to 4 do

s := s+ t
t := t+ i

end

output s
output t

3. Find the output.

a := 0
b := 3
for i := 1 to 8 do

if a < b then

a := a+ i
else

b := b+ a
end

end

output a
output b

4. Find the output if the input is
X = (3, 6, 4, 9, 5, 1, 6, 2, 5, 7).

Algorithm

Input: X=(x1, x2, . . . , xn)
begin

for i := 2 to n do

z := xi�1

xi�1 := xi

xi := z
end

output X
end

5. Input is a list of even length.
Find the output for input
X = (3, 5, 8, 4, 6, 8, 7, 4, 2, 3).

Algorithm

Input: X=(x1, x2, . . . , xn)
begin

for i := 1 to
n
2 do

k := 2i
xk := xk + 1

end

for j := 1 to
n
2 do

k := 2j � 1
xk := xk � 1

end

output X
end

6. The following algorithm accepts a list X
of numbers as input. What does the al-
gorithm do?

Algorithm

Input: X=(x1, x2, . . . , xn)
Output: ?
begin

x := 0
for i = 1 to n do

x := x+ xi

end

output
x
n

end

7. The Fibonacci sequence is the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . whose first
two terms are 1 and 1, and thereafter any term is the sum of the previous two terms.
The numbers in this sequence are called Fibonacci numbers. Write an algorithm
whose input is an integer n and whose output is the first n Fibonacci numbers.

8. A geometric sequence with ratio r is a sequence of numbers for which any term
is r times the previous term. For example, 5, 10, 20, 40, 80, 160, . . . is a geometric
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sequence with ratio 2. Write an algorithm whose input is three numbers a, r 2 R,
and n 2 N, and whose output is the first n terms of the geometric sequence with
first term a and ratio r.

9. Write an algorithm whose input is two integers n and k, and whose output is
�
n
k

�
.

10. Write an algorithm whose input is a list of numbers (x1, x2, . . . , xn), and whose
output is the smallest number in the list.

11. Write an algorithm whose input is a list of numbers (x1, x2, . . . , xn), and whose
output is the word ”yes” if the list has any repeated entries, and “no” otherwise.

12. Write an algorithm whose input is two integers n, k and whose output is P (n, k)
(as defined in Fact 6.4 on page 124).

13. Write an algorithm whose input is two positive integers n, k, and whose output is the
number of non-negative integer solutions of the equation x1+x2+x+x3+· · ·+xk =
n. (See Section 6.8.)

14. Write an algorithm whose input is a list X = (x1, x2, . . . , xn) and whose output is
the word “yes” if x1  x2  · · ·  xn, or “no” otherwise.

15. As noted at the bottom of page 212, our Algorithm 6 does not work on lists of
length 1 or 0. Modify it so that it does.

16. Write an algorithm whose input is a list X = (x1, . . . , xn), and whose output is the
list X in reverse order. (For example input (1, 3, 2, 3) yields output (3, 2, 3, 1).)

17. Write an algorithm whose input is an integer n, and whose output is the nth row
of Pascal’s triangle.

8.5 The Division Algorithm

Many times in this book we will need to use the basic fact that any integer a can
be divided by an integer b > 0, resulting in a quotient q and remainder r, for which
0  r < b. In other words, given any two integers a and b > 0, we can find two
integers q and r for which

a = qb+ r, and 0  r < b.

As an example, b = 3 goes into a = 17 q = 5 times with remainder r = 2. In
symbols, 17 = 5 · 3 + 2, or a = qb+ r.

We are now going to write an algorithm whose input is two integers a � 0 and
b > 0, and whose output is the two numbers q and r, for which a = qb + r and
0  r < b. That is, the output is the quotient and remainder that results in dividing
a by b.

To see how to proceed, notice that if a = qb+ r, then

a = b+ b+ b+ · · ·+ b| {z }
q times

+ r,

where the remainder r is less than b. This means that we can get r by continually
subtracting b from a until we get a non-negative number r that is smaller than b.
And then q is the number of times we had to subtract b. Our algorithm does just
this. It keeps subtracting b from a until it gets an answer that is smaller than b
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(at which point no further b’s can be subtracted). A variable q simply counts how
many b’s have been subtracted.

Algorithm 7: The division algorithm

Input: Integers a � 0 and b > 0

Output: Integers q and r for which a = qb+ r and 0  r < b

begin
q := 0 . . . . . . . . . . . . . . . . . . .so far we have subtracted b from a zero times

while a � b do
a := a� b . . . . . . . . . . . subtract b from a until a � b is no longer true

q := q + 1 . . . . . . . . . . . . . q increases by 1 each time a b is subtracted
end

r := a . . . . . . . . . . . . . . . . . . . . . a now equals its original value, minus q b’s

output q

output r

end

The division algorithm is actually quite old, and its origins are unclear. It
goes back at least as far as ancient Egypt and Babylonia. Obviously it was not
originally something that would be implemented on a computer. It was just a set
of instructions for finding a quotient and remainder.

Actually, in mathematics the term division algorithm is usually understood to
be the statement that any two integers a and b > 0 have a quotient and remainder.
It is this statement that will be most useful for us later in this course.

Fact 8.1. (The Division Algorithm) Given integers a and b with b > 0, there
exist unique integers q and r for which a = qb+ r and 0  r < b.

This will be very useful for proving many theorems about numbers and mathe-
matical structures and systems, as we will see later in the course.

Notice that Fact 8.1 does not require a � 0, as our algorithm on the previous
page did. In fact, the division algorithm in general works for any value of a, positive
or negative. For example, if a = �17 and b = 3, then

a = qb + r
is achieved as

�17 = �6 · 3 + 1,

that is, b = 3 goes into a = �17 q = �6 times, with a remainder of r = 1. Notice
that indeed 0  r  b. Exercise 8.12 asks us to adapt Algorithm 7 so that it works
for both positive and negative values of a.
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8.6 Procedures and Recursion

In writing an algorithm, we may have to reuse certain blocks of code numerous
times. Imagine an algorithm that has to sort two or more lists. For each sort,
we’d have to insert code for a separate bubble sort. Rewriting code like this is
cumbersome, ine�cient and annoying.

To overcome this problem, most programming languages allow creation of proce-
dures, which are mini-algorithms (or programs) that accomplish some specific task.
In general, a procedure is like a function f(x) or g(x, y) that we plug values into
and get a result in return.

We will first illustrate this with a concrete example, and afterwards we will
define the syntax for general procedures. Here is a procedure that computes n!.
Think of it as a declaration of a function f(n) = n!.

Procedure Fac(n)

begin
if n = 0 then

return 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because 0! = 1
else

y := 1
for i := 1 to n do

y := y · i
end
return y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . now y = n!

end

end

This procedure now acts as a function called Fac. It takes as input a number n and
returns the value y = n!, as specified in the return command on the last line. For
example Fac(3) = 6, Fac(4) = 24, and Fac(5) = 120. Now that we have defined it
we could use it in (say) an algorithm to compute

�n
k

�
= n!

k!(n�k)! .

Algorithm 8: to compute
�n
k

�

Input: Integers n and k, with n � 0
Output:

�n
k

�

begin
if (k < 0) _ (k > n) then

output 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . in this case
�n
k

�
= 0

else
output

Fac(n)

Fac(k) · Fac(n� k)
. . . . . . . . . . . . . procedure Fac is called here

end

end
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(This purpose of Algorithm 8 is only to show how a procedure might be used. It
is not the best way to compute

�n
n

�
because the numerator and denominator of the

fraction can be very large.)
If an algorithm uses a previously-defined procedure, we say the algorithm calls

the procedure. For example, Algorithm 8 makes three calls to the procedure Fac.
In general, the pseudocode for a procedure named (say) Name has the following

syntax. The first line declares the name of the procedure, followed by a list of
variables that it takes as input. The body of the procedure has a list of commands,
including the return statement, saying what value the procedure returns.

Procedure Name( list of variables )

begin
command

...
return value

end

Our next example is a procedure called Largest. Its input is a list (x1, x2, . . . xn)
of numbers, and it returns the largest entry. For example, Largest(7, 2, 3, 8, 4) = 8.
It is just a recasting of Algorithm 4 into a procedure.

Procedure Largest(x1, x2, x3, . . . , xn )

begin
biggest := x1 . . . . . . . . . . . . . . . . . . . . . . . this is the largest value found so far
for i := 1 to n do

if biggest < xi then
biggest := xi . . . . . . . . . . . . . . . . this is the largest value found so far

end

end
return biggest

end

To conclude the section, we explore a significant idea called recursion. Although
this is a far-reaching idea, it will not be used extensively in the remainder of this
book. But it is a fascinating topic, even mind-boggling.

We have seen that a procedure is a set of instructions for completing some task.
We also know that algorithms may call procedures, and you can imagine writing a
procedure that calls another procedure. Under certain circumstances it makes sense
for a procedure to call itself. Such a procedure is called a recursive procedure.

Here is an example. We will call it RFac (for RecursiveFactorial). It is our
second procedure for computing a factorial, that is, RFac(n) = n!. It uses the fact
that n! = n · (n� 1)!, which is to say RFac(n) = n · RFac(n� 1).
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Procedure RFac(n )

begin
if n = 0 then

return 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because 0! = 1
else

return n · RFac(n� 1) . . . . . . . . . . . . . . . . . . . . . because n! = n · (n� 1)!
end

end

To understand how it works, consider what happens when we run, say, RFac(5).
In running RFac(5), the procedure’s code says it must return the value 5 · RFac(4).
Before doing this, it must run RFac(4). So it runs RFac(4) and waits for the result.
But then RFac(4) must return 4·RFac(3), so it runs RFac(3) and waits for the result.
But then RFac(3) must return 3·RFac(2), so it runs RFac(2) and waits for the result.
But then RFac(2) must return 2·RFac(1), so it runs RFac(1) and waits for the result.
Finally, RFac(1) just returns 1, which RFac(2) was waiting for.
Then RFac(2) returns 2 · RFac(1) = 2 · 1, which RFac(3) was waiting for.
Then RFac(3) returns 3 · RFac(2) = 3 · 2 · 1, which RFac(4) was waiting for.
Then RFac(4) returns 4 · RFac(3) = 4 · 3 · 2 · 1, which RFac(5) was waiting for.
At last, RFac(5) can return 5 · RFac(4) = 5 · 4 · 3 · 2 · 1.

The diagram below is a schematic of the running of RFac(5). Each call to RFac

is indicated by a shaded rectangle. The rectangles are nested, one within another,
reflecting the pattern in which calls to RFac occur within other calls to RFac.

0

1

2

3

4

5

level

return 5 ·

return 4 ·

return 3 ·

return 2 ·

return 1 ·

return 1

RFac(5)

RFac(4)

RFac(3)

RFac(2)

RFac(1)

RFac(0)

5 · 4 · 3 · 2 · 1

4 · 3 · 2 · 1

3 · 2 · 1

2 · 1

1

A procedure that calls itself is a recursive procedure. The situation in which
a procedure calls itself (i.e., runs a copy of itself) is called recursion.
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Some mental energy may be necessary in order to fully grasp recursion, but
practice and experience will bring you to the point that you can design programs
that use it. We will see recursion in several other places in this text. Section 15.5 will
introduce a method of proving that recursion really works. Section 21.5 introduces
a recursive sorting algorithm that is quicker and more e�cient than bubble sort.

Exercises for Sections 8.5 and 8.6

1. Write a procedure whose input is a list of numbers X = (x1, x2, . . . , xn), and whose
output is the list in reverse order.

2. Write a procedure whose input is two positive numbers n and k, and whose output
is P (n, k) (as defined in Fact 6.4 on page 124).

3. Write a procedure whose input is a list of numbers X = (x1, x2, . . . , xn), and whose
output is “yes” if X is in numeric order (i.e., x1  x2  · · ·  xn), and “no”
otherwise.

4. Write a procedure whose input is a list of numbers X = (x1, x2, . . . , xn), and whose
output is the number of entries that are negative.

5. Write a procedure whose input is a list X = (0, 0, 1, 0, 1, . . . , 1) of 0’s and 1’s, of
length n. The procedure returns the number of 1’s in X.

6. Write a procedure whose input is a list of numbers X = (x1, x2, . . . , xn), and whose
output is the average of all the entries.

7. Write a procedure whose input is a list of numbers X = (x1, x2, . . . , xn), and whose
output is the product of x1x2 · · ·xn of all the entries.

8. Write a procedure whose input is a list of numbers X = (x1, x2, . . . , xn), and whose
output is the list (x1, 2x2, 3x3, . . . , nxn).

9. Write a procedure whose input is two lists of numbers X = (x1, x2, . . . , xn) and
Y = (y1, y2, . . . , yn), and whose output is the list
Z = (x1, x2, x3, . . . , xn, yn, . . . , y3, y2, y1).

10. Write a procedure whose input is two lists of numbers X = (x1, x2, . . . , xn)
and Y = (y1, y2, . . . , yn), and whose output is the merged list Z =
(x1, y1, x2, y2, x3, y3, . . . , xn, yn).

11. Write a procedure whose input is two lists of numbers X = (x1, x2, . . . , xn) and
Y = (y1, y2, . . . , yn), and whose output is the list Z = (x1 + y1, x2 + y2, x3 +
y3, . . . , xn + yn).

12. Algorithm 7 is written so that it requires a > 0. Rewrite it so that it works for all
values of a, both positive and negative. (But still assume b > 0.)

13. The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .. The first two terms are
1, and thereafter any term is the sum of the previous two terms. The numbers in
this sequence are called Fibonacci numbers. Write a recursive procedure whose
input is an integer n and whose output is the nth Fibonacci number.

14. A geometric sequence with ratio r is a sequence of numbers for which any term
is r times the previous term. For example, 5, 10, 20, 40, 80, 160, . . . is a geometric
sequence with ratio 2. Write an recursive procedure whose input is three numbers
a, r 2 R, and n 2 N, and whose output is the nth term of the geometric sequence
with first term a and ratio r.
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15. An arithmetic sequence with di↵erence d is a sequence of numbers for which any
term is d plus the previous term. For example, 5, 8, 11, 14, 17, 20, . . . is a arithmetic
sequence with di↵erence 3. Write an recursive procedure whose input is three
numbers a, d 2 R, and n 2 N, and whose output is the nth term of the arithmetic
sequence whose first term is a and whose di↵erence is d.

8.7 Counting Steps in Algorithms

Computer scientists are very attentive to algorithm e�ciency. An ideal algorithm
completes its task as quickly as possible, with the fewest number of steps. Thus
counting steps is an important problem. Of course the number of steps needed
probably depends on what the input is. Thus a significant question is

How many steps does Algorithm X have to make in order to process input Y?

This section explains how to answer such questions. But, as we will see, the
answer can be highly sensitive to the input Y . Ultimately, therefore, we will phrase
the question as “What is the maximum number of steps Algorithm X might have to
expend in processing the input of a given size?” In other words, “In the worst case,
how many steps are needed?” This is still a very valid question, for if an algorithm’s
worst-case performance is still favorable, then it is a good algorithm.

To get started, we will look at fragments of algorithms. Suppose an algorithm
has the following piece of code, where n has been assigned an integer value in a
previous line.

for i := 1 to 3n do
Command 1
Command 2

end
Command 3
for j := 1 to n do

for k := 1 to n do
Command 4

end

end

In all, how many commands are executed? The first for loop makes 3n iterations,
each issuing two commands, so it makes 3n·2 = 6n commands. Then Command 3
executes. Next comes a nested for loop, where Command 4 executes once for each
pair (i, k) with 1  j, k  n. By the multiplication principle, there are n·n = n2

such pairs, so Command 4 executes n2 times. So in all, a total of 6n + 1 + n2

commands are executed.
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Similarly, in the following three-tier for loop, a command is issued once for every
triple (i, j, k) with 0  i  n, 0  j  n and 0  k  n. There are n+1 possibilities
for each of i, j and k so Command 1 get executed (n+ 1)3 times.

for i := 0 to n do
for j := 0 to n do

for k := 0 to n do
Command 1

end

end

end

Now let’s count the steps in this next chunk of code, which very similar to the
above example, except that j and k don’t go all the way up to n when i < n.

for i := 0 to n do
for j := 0 to i do

for k := 0 to j do
Command 1

end

end

end

Command 1 is executed for each combination of i, j, k with 0  k  j  i  n.
Each combination corresponds to a list of n stars and 3 bars ⇤⇤⇤|⇤⇤|⇤|⇤⇤ · · · ⇤ where
k is the number of stars to the left of the first bar, j is the number of stars to the left
of the second bar, and i is the number of stars to the left of the third bar. Such a
list has length n+3, and we can make it by choosing 3 out of n+3 spots for the bars
and filling the rest with stars. There are

�n+3

3

�
such lists, so the number of times

Command 1 is executed is
�n+3

3

�
= n(n�1)(n�2)

3!
= n3�3n2

+2n
6

= 1

6
n3 � 1

2
n2 + 1

3
n.

Now that we’ve seen some examples, let’s sharpen our focus. Our goal is to
determine how many steps an algorithm makes to process a given input. To attain
this goal we must first specify exactly what we mean by “step.” A step in an
algorithm is one of three types of commands, or operations.

• an assignment command (possibly involving a numeric computation)
• a return or output command
• an evaluation of a boolean expression.

To be sure, by this criterion some steps are more involved than others. For
example, consider the following two steps.

k := k + 1

y :=

p
x+ log

2
(x)

xk

Certainly the second one is more involved than the first, as it entails a computation
that can be broken down into several numeric operations. Still, we maintain that
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it is a single step. The idea is that a step is an atomic action in the running of an
algorithm that could be preformed in a fixed unit of time (like a nanosecond).

Let’s now count the steps made by the procedure Largest (page 217). It returns
the largest value in a list (x1, . . . , xn) of n numbers. It is repeated below.

Procedure Largest(x1, x2, x3, . . . , xn )

begin
biggest := x1 . . . . . . . . . . . . . . . . . . . . . . . this is the largest value found so far
for i := 1 to n do

if (biggest < xi) then
biggest := xi . . . . . . . . . . . . . . . . this is the largest value found so far

end

end
return biggest

end

In the first line, an assignment biggest := x1 is made. So far, that’s one step.
The last line returns biggest. That’s another step. Between them is the for-loop,
which does n iterations. Each iteration issues an if-statement. This statement makes
one boolean evaluation, checking whether (biggest < xi) is true. That counts as
a step. If (biggest < xi) happens to be true, then another step (biggest := xi) is
issued. Thus the total number of steps executed by the procedure is completely
dependent on if (and how many times) the expression (biggest < xi) is true.

For instance, if the input list is (x1, x2, . . . , xn) = (1, 2, 3, . . . , n), then
(biggest < xi) is true at each iteration of the loop. Consequently, each of the n
iterations does two steps, namely the evaluation (biggest < xi) and the assignment
biggest := xi. Therefore the total number of steps is 2 + 2n. This is a worst-case
scenario among all input lists of length n, because each loop iteration involves the
maximum number (two) of steps.

At the other extreme, consider input list (x1, x2, . . . , xn) = (n, n�1, n�2, . . . , 1)
(the reverse of the list in the previous paragraph). This time (biggest < xi) is false
at each iteration of the loop, so the assignment biggest := xi is never made. The
total number of steps is only 2 + n.

In summary, when processing a list of length n, the procedure Largest does at
least 2 + n steps, and at most 2 + 2n steps. The function f(n) = 2 + 2n measures
the worst-case performance of the procedure, in the sense that an input of size n
can always be processed in f(n) or fewer steps. This suggests a definition.

Definition 8.1. An algorithm has performance no worse than f(n), provided
that when processing an input of size n, it never makes more than f(n) steps.

The next section further illustrates Definition 8.1. By finding the worst-case
performances of two algorithms, we can categorically say which one is better.
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Exercises for Section 8.7

1. Count how many times
Command is executed.

for i := 1 to 60 do

for j := 1 to i do

Command
end

end

2. Count how many times
Command is executed.

for i := 1 to 60 do

for j := 1 to i do

Command
end

end

3. Let n be a positive integer. How
many times is Command executed?
(The answer depends on n.)

for i := 0 to n do

for j := 0 to i do

for k := 0 to j do

for ` := 0 to k do

Command
end

end

end

end

4. Suppose n is a positive integer. How
many times is Command executed?
(The answer depends on n.)

for i := 1 to n do

for j := 1 to n do

for k := 1 to n do

for ` := 1 to n do

Command
end

end

end

end

5. Count how many times
Command is executed.

for i := 1 to 2017 do

if i is even then

Command
else

Command
Command

end

end

6. Count how many times
Command is executed.

for i := 0 to 4 do

for j := 0 to 40 do

for k := 0 to 400 do

Command
end

end

end

7. How many steps does the bubble sort algorithm (Algorithm 6 on page 212) take if
its input list X = (x1, x2, . . . , xn) is already sorted?

8. Find the number of steps that Algorithm 1 (page 207) executes for an input of n.

9. Find the number of steps that Algorithm 2 (page 207) executes for an input of n.

10. Find the number of steps that Algorithm 3 (page 209) executes for an input of
n > 0.

11. Find number of steps that Algorithm 4 (page 210) executes when the input is a list
of length n.

12. Find a formula for the worst-case number of steps that the bubble sort algorithm
(Algorithm 6 on page 212) executes when the input is a list of length n.

13. Find the number of steps that the division algorithm (Algorithm 7 on page 215)
executes for an input of two integers a and b. (The answer depends on a and b.)
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8.8 Case Study: Sequential Search versus Binary Search

We finish the chapter by comparing two di↵erent algorithms that do the same task,
namely determine if a certain number appears on a sorted list. We will see that the
second (more complex) one is vastly more e�cient in terms of steps executed.

Each algorithm takes as input a number z and a list X = (x1, x2, . . . , xn) of
numbers in numeric order, that is, x1  x2  · · ·  xn. The output is the word
“yes” if z equals some list entry; otherwise the output is the word “no.”

The first algorithm, called sequential search, simply traverses the list from
left to right, stopping either when it finds z = xk, or when it reaches list’s end.
A variable found equals either the word “‘yes” or the word “no.” The algorithm
starts by assigning found := no, and changes it to “yes” only when and if it
finds a k for which z = xk. It has a while loop that continues running as long as
found := no (no match found yet) and k  n.

Algorithm 9: sequential search

Input: A number z and a sorted list X = (x1, x2, . . . , xn) of numbers
Output: “yes” if z appears in X; otherwise “no”
begin

found := no . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . means z not yet found in X
k := 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k is subscript for list entries xk

while ( found = no ) ^ (k < n) do
k := k + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .go to next list entry
if z = xk then

found := yes . . . . . . . . . . . . . . . . . . . . . . . . the number z appears in X
end

end
output found

end

Notice that sequential search works just as well when X is not in numeric order.
(But this will not be the case with our next algorithm.)

Counting steps, Algorithm 9 has two steps before the while-loop, and one after it.
The loop does at most n iterations, each involving at most four steps (two boolean
evaluations and two assignments). So it finishes in at most f(n) = 3 + 4n steps.
This is a worst-case scenario, in which z is not found, or it is found at the end of
the list. (At the other extreme, if x1 = z, then the algorithm stops after 7 steps.)

Now let’s develop our second list searching algorithm. Unlike sequential search,
which examines every list entry, this new method ignores almost all entries but
still returns the correct result. It is akin to looking up a word in an old-fashioned
dictionary. Opening the book to the middle page, you see that that word you seek
appears (say) after this page. You then ignore the first half of the book and repeat
the process on the second half, in essence halving the book at each step until you
zero in on the word.
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To illustrate the idea, suppose we need to decide if z = 4 is in the list X =
(0, 1, 1, 2, 3, 3, 3, 3, 4, 5, 5, 5, 5, 8, 8, 9). If z is in the list, it is in the shaded area
between the left-most position L = 1 and the right-most position R = 16.

X =
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

0 1 1 2 3 3 3 3 4 5 5 5 5 8 8 9

L = 1 R = 16M =
⌅
L+R

2

⇧
= 8

Jump to a middle position M =
⌅
L+R
2

⇧
= 8, the average of L and R, rounded down

(if necessary) to an integer. The number z = 4 we are searching for is greater than
xM = 3, so it is to the right of x8, in the shaded area below.

X =
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

0 1 1 2 3 3 3 3 4 5 5 5 5 8 8 9

L=9 R=16M=
⌅
L+R

2

⇧
=12

So update L := M + 1 and form a new middle M :=
⌅
L+R
2

⇧
= 12 (shown above).

Now xM = 5, and the number z = 4 we seek is less than xM , so it is in the
shaded area below. So update R := M�1. Form a new middle M :=

⌅
L+R
2

⇧
= 10.

X =
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

0 1 1 2 3 3 3 3 4 5 5 5 5 8 8 9

L=9 R=11M=
⌅
L+R

2

⇧
=10

Again, xM = 5, and the number z = 4 we seek is less than xM , so it is in the
shaded area below. Update R := M � 1 and form a new middle M :=

⌅
L+R
2

⇧
= 9.

X =
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

0 1 1 2 3 3 3 3 4 5 5 5 5 8 8 9

L=9 R=9M=
⌅
L+R

2

⇧
=9

Now L = R, and we have zeroed in at xM = 4, the number sought.
This new search strategy is called binary search. Binary search continually

maintains two list positions L (left) and R (right) that the searched-for entry z
must be between. In each iteration, a middle M is computed. If xM = z, then z
is found. If xM < z, then z is to the right of M , so M + 1 becomes the new L.
If xM > z, then z is to the left of M , so M � 1 becomes the new R. In this way,
L and R get closer and closer to each other, trapping z between them (if indeed X
contains z). If z is not in X, then eventually L = R. At this point the algorithm
terminates and reports that z is not in X.
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Algorithm 10: binary search

Input: A number z, and a sorted list X = (x1, x2, . . . , xn) of numbers
Output: “yes” if z appears in X; otherwise “no”
begin

found := no . . . . . . . . . . . . . . . . . . this means z has not yet been found in X
L := 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . left end of search area is x1

R := n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . right end of search area is xn

while ( found = no ) ^ (L < R ) do

M :=

�
L + R

2

⌫
. . . . . . . . . . . . . . . . . . . . . . . M is middle of search area

if z = xM then
found := yes . . . . . . . . . . . . . . . . . . . . . . . . the number z appears in X

else
if z < xM then

R := M � 1 . . . . . . . . . . . . . . if z is in X, it’s between xL and xM

else
L := M + 1 . . . . . . . . . . . . . . if z is in X, it’s between xM and xR

end

end

end
output found

end

Let’s count the steps needed perform a binary search on a list. Algorithm 10
starts with 3 commands, initializing found, L and R. It closes with one output
statement. Between these is the while loop, which iterates until found = yes or
L = R. How many iterations is this? Before the first iteration, the distance between
L and R is n�1. At each iteration, the distance between L and R is at least halved.

Thus, after the first iteration the distance between L and R is less than n
2
.

After the second iteration the distance between them is less than 1

2
· n

2
= n/22.

After the third iteration the distance between them is less than 1

2
· n

22
= n/23.

Thus, after k iterations, the distance between L and R is less than n/2k.
So in the worse case, the while loop keeps running, for k iterations, until

n

2k
 1 <

n

2k�1
,

which is the smallest k for which we can be confident that the distance between R
and L is less than 1 (and hence 0). Multiplying this by 2k yields

n  2k < 2n.

We can isolate the number of iterations k by taking log
2
, and applying logarithm

properties. (If your logarithm skills are rusty, Chapter 20 is a review. Logarithms
will not be used in a substantial way until Chapter 21.)
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n  2k < 2n
log

2
(n)  log

2
(2k) < log

2
(2n)

log
2
(n)  k < log

2
(2) + log

2
(n)

log
2
(n)  k < 1 + log

2
(n).

So the number of iterations k is an integer that is between log
2
(n) and 1+ log

2
(n),

which means k = d log
2
(n) e. (Generally log

2
(n) is not an integer, unless n = 2p is

an integer power of 2, in which case log
2
(n) = log

2
(2p) = p.)

In summary, binary search (Algorithm 10) issues four commands outside the
while-loop, and the loop that makes at most d log

2
(n) e iterations. Each iteration

executes at most five commands (check this). Thus the binary search algorithm
does a total of at most g(n) = 4 + 5d log

2
(n) e steps to search a list of length n.

By contrast, recall that sequential search (Algorithm 9) needs at most f(n) =
3 + 4n steps to search a list of length n. Figure 8.1 compares the graphs of f(n) =
3 + 4n with g(n) = 4 + 5 log

2
(n), showing that in general binary search involves

far fewer steps than sequential search. This is especially pronounced for long lists.
For example, if a list has length n = 215 = 32768, a sequential search could take as
many as 3 + 4 · 32768 = 131075 steps, but binary search is guaranteed to finish in
no more than 4 + 5 log

2
(32768) = 4 + 5 · 15 = 79 steps.

n (length of list)

y

st
ep

s
n
ee
d
ed

to
se
ar
ch

li
st f(n) = 3 + 4n (sequential search)

g(n) = 4 + 5 log
2
(n) (binary search)
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Fig. 8.1 A comparison of the worst-case performance of sequential versus binary search.

This case study illustrates a very important point. An algorithm that cannot
finish quickly is of limited use, at best. In our technological world, it is often not
acceptable to have to wait seconds, minutes, or hours for an algorithm to complete
a critical task. Programmers need to compare the relative e�ciencies of di↵erent
algorithm designs, and to create algorithms that run quickly. The ability to do this
rests on the foundation of the counting techniques developed in Chapter 6. We will
take up this topic again, in Chapter 21, and push it further.
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Solutions for Chapter 8

Sections 8.1, 8.2 and 8.3

1. Find the output.

x := 1
y := 10
while x2 < y do

y := y + x
x := x+ 1

end

output x
output y

Solution The following table tallies the values
of x and y initially, and at the end of each iteration
of the loop.

iteration 1 2 3
x 1 2 3 4
y 10 11 13 16

The final values (which are the output) are x = 4
and y = 16.

3. Find the output.

a := 0
b := 3
for i := 1 to 8 do

if a < b then

a := a+ i
else

b := b+ a
end

end

output a
output b

Solution The following table tallies the values
of a and b initially, and at the end of each iteration
(i) of the loop.

iteration (i) 1 2 3 4 5 6 7 8
a 0 1 3 3 7 7 13 13 21
b 3 3 3 6 6 13 13 26 26

The final values (which are the output) are a = 21
and b = 26.

5. The input of the following algorithm is a list X of even length. Find the output for
input X = (3, 5, 8, 4, 6, 8, 7, 4, 2, 3).

Algorithm

Input: X=(x1, x2, . . . , xn)
begin

for i := 1 to
n
2 do

k := 2i
xk := xk + 1

end

for j := 1 to
n
2 do

k := 2j � 1
xk := xk � 1

end

output X
end

Solution The first for loop adds
1 to each list entry xk for which the
index k is even. In other words, it
adds 1 to the entries x2, x4, x6, x8

and x10.

The second for loop subtracts 1
from each list entry xk for which
the index k is odd. In other
words, it subtracts 1 from the en-
tries x1, x3, x5, x7 and x9.

Therefore the output is
X = (2, 6, 7, 5, 5, 9, 6, 5, 1, 4).

7. Write an algorithm whose input is an integer n and whose output is the first n
Fibonacci numbers.
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Algorithm: to compute the first n Fibonacci numbers
Input: An integer n for which n � 2
Output: The first n Fibonacci numbers
begin

x := 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x is the 1st Fibonacci number
y := 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .y is the 2nd Fibonacci number
output x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . output 1st Fibonacci number
output y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . output 2nd Fibonacci number
i := 2 . . . . . . . . . . . . . . . . . . . . . i is # of Fibonacci numbers outputted so far
while i < n do

z := x+ y . . . . . . . . . . . . . . . . . . . . . . .z is most recent Fibonacci number
output z . . . . . . . . . . . . . . . . . . . . output most recent Fibonacci number
i := i+ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .update i
x := y . . . . . . . . . . . . . . . . .x now second-most-recent Fibonacci number
y := z . . . . . . . . . . . . . . . . . . . . . . . . y now most recent Fibonacci number

end

end

9. Write an algorithm whose input is two integers n and k, and whose output is
�
n
k

�
.

Solution: Recall that
�
n
k

�
= 0 if n  0, or if n > 0 but k < 0 or k > n. Also

�
n
k

�
= 1

when k = 0 or k = n. Otherwise, Fact 6.5 (page 128) says 
n
k

!
=

n!
k!(n� k)!

=
n(n� 1)(n� 2) · · · (n� k + 3)(n� k + 2)(n� k + 1)

k!

=
(n� k + 1)(n� k + 2)(n� k + 3) · · · (n� 2)(n� 1) n

1 · 2 · 3 · · · (k � 2)(k � 1) k
.

Our algorithm will carry out this arithmetic by first putting y := 1, then using a
for loop to multiply y by (n� k+ 1), then by (n� k+ 2), then (n� k+ 3), and so
on, working its way up to multiplying by n. Then a second for loop will divide by
1, then by 2, then by 3, and so on, until finally dividing by k.

Algorithm: computes
�n
k

�

Input: Integers n and k, with n � 0
Output:

�
n
k

�

begin

if (n  0) _
�
(k < 0) _ (k > n)

�
then

output 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . in this case
�
n
k

�
= 0

else

if (k = 0) _ (k = n) then
output 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . in this case

�
n
k

�
= 1

else

y := 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y is initially 1
for i := n� k + 1 to n do

y := y · i . . . . . . multiply y by i, for each n� k + 1  i  n
end

for i := 1 to k do

y :=
y
i

. . . . . . . . . . . . . . . . . . divide y by i, for each 1  i  k

end

output y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .now y =
�
n
k

�

end

end

end
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11. Write an algorithm whose input is a list of numbers (x1, x2, . . . , xn), and whose
output is the word ”yes” if the list has any repeated entries, and “no” otherwise.

Solution: For each xi up to xn�1 we check if it equals an xk later on the list.

Algorithm
Input: A list of numbers x1, x2, x3 . . . , xn

Output: ”yes” if the list has repetition, otherwise ”no”
begin

match := no
for i := 1 to n� 1 do

for k = i+ 1 to n do

if xi = xk then

match := yes
end

end

end

end

output match

13. Write an algorithm whose input is two positive integers n, k, and whose output is
the number of non-negative integer solutions of x1 + x2 + x+ x3 + · · ·+ xk = n.

Solution: As in Section 6.8 we can model the solutions with stars-and-bars lists

x1
z }| {
⇤ ⇤ ⇤ · · · ⇤

��
x2

z }| {
⇤ ⇤ ⇤ · · · ⇤

��
x3

z }| {
⇤ ⇤ ⇤ · · · ⇤

�� · · ·
��

xk
z }| {
⇤ ⇤ ⇤ · · · ⇤,

having n stars and k�1 bars. Such a list has length n+k�1, and can be made by
choosing n positions for stars and filling the remaining k� 1 with bars. Thus there
are

�
n+k�1

n

�
such lists, so this is also the number of solutions to the equation. Thus

our algorithm must simply compute
�
n+k�1

n

�
. For this we can adapt the algorithm

for
�
n
k

�
in Exercise 9 above.

Algorithm: computes
�n+k�1

n

�

Input: Positive integers n and k
Output:

�
n+k�1

n

�

begin

y := 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y is initially 1
for i := k to n+ k � 1 do

y := y · i . . . . . . . . . . . . . .multiply y by i, for each k  i  n+ k � 1
end

for i := 1 to k do

y :=
y
i

. . . . . . . . . . . . . . . . . . . . . . . . . . divide y by i, for each 1  i  k

end

output y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .now y =
�
n+k�1

n

�

end

15. Fix BubbleSort.
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(Better Bubble Sort) sorts any list

Input: A list X = (x1, x2, . . . , xn) of numbers
Output: The list sorted into numeric order
begin

if 0  n  1 then

output X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X is already sorted
else

for k := 1 to n� 1 do

for i := 1 to n� k do

if xi > xi+1 then

temp := xi . . . . . . . . . . . . . . . . temporarily holds value of xi

xi := xi+1

xi+1 := temp . . . . . . . . . . . . . now xi and xi+1 are swapped
end

end

end

output X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . now X is sorted
end

end

17. Design an algorithm whose output is the nth row of Pascal’s triangle.

For an input of n, the output will be the sequence
�
n
0

�
,
�
n
1

�
,
�
n
2

�
,
�
n
3

�
, . . . ,

�
n
n

�
.

How could we do this? To begin, we need a for loop with the following structure.

for k := 0 to n do

y :=
�
n
k

�

output y
end

To finish it we just need to add in the lines that compute y :=
�
n
k

�
. For this we can

reuse our code from Algorithm 11 in our solution of Exercise 9. Actually, the above
for loop makes k go from 1 to n, so we don’t even need the lines of Algorithm 11
that deal with the cases n  0 _

�
(k < 0) _ (k > n)

�
, for which

�
n
k

�
= 0.

Algorithm: computes the nth row of Pascal’s triangle
Input: Integer n with n � 0
Output: nth row of Pascal’s triangle
begin

for k := 0 to n do

if (k = 0) _ (k = n) then
output 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . in this case

�
n
k

�
= 1

else

y := 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .y is initially 1
for i := n� k + 1 to n do

y := y · i
end

for i := 1 to k do

y := y/i
end

output y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .now y =
�
n
k

�

end

end

end
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Sections 8.5 and 8.6

1. Write a procedure whose input is a list of numbers X = (x1, x2, . . . , xn), and whose
output is the list in reverse order.

Procedure Reverse(X)

begin

Y := X . . . . . . . . . . . . . . . . . .Y = (y1, . . . , yn) is a copy of X = (x1, . . . , xn)
for i := 1 to n do

yi := xn�i+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . fill in Y as the reverse of X
end

return Y
end

3. Write a procedure whose input is a list of numbers X = (x1, x2, . . . , xn), and whose
output is “yes” if X is in numeric order (i.e., x1  x2  · · ·  xn), and “no”
otherwise.

Procedure Check(X)

begin

ordered := yes . . . . . . list assumed ordered until found not to be ordered
i := 1
while (ordered = yes) ^ (i < n) do

if xi > xi+1 then

ordered := no
end

i := i+ 1
end

return ordered
end

5. Write a procedure whose input is a list X = (0, 0, 1, 0, 1, . . . , 1) of 0’s and 1’s, of
length n. The procedure returns the number of 1’s in X.

Procedure Ones(X)

begin

total := 0 . . . . . . . . . . . . . . . . . . . . . . . so far total number of 1’s found is zero
for i := 1 to n do

if xi = 1 then

total := total + 1
end

end

return total
end

7. Write a procedure whose input is a list of numbers X = (x1, x2, . . . , xn), and whose
output is the product of x1x2 · · ·xn of all the entries.

Procedure Prod(X)

begin

product := 1 for i := 1 to n do

product := product · xi

end

return prod
end



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 233

Algorithms 233

9. Write a procedure whose input is two lists of numbers X = (x1, x2, . . . , xn) and
Y = (y1, y2, . . . , yn), and whose output is Z = (x1, x2, x3, . . . , xn, yn, . . . , y3, y2, y1).

Procedure Glue(X,Y )

begin

Z := (0, 0, 0, . . . , 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .a list of length 2n
for i := 1 to n do

zi := xi

zn+1�i := yi
end

return Z
end

11. Write a procedure whose input is two lists of numbers X = (x1, x2, . . . , xn) and
Y = (y1, y2, . . . , yn), and whose output is Z = (x1+y1, x2+y2, x3+y3, . . . , xn+yn).

Procedure Add(X,Y )

begin

Z := X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z is a copy of X
for i := 1 to n do

zi := zi + yi
end

return Z
end

13. The Fibonacci sequence is the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .. Write
a recursive procedure whose input is an integer n and whose output is the nth
Fibonacci number.

Procedure Fib(n)

begin

if (n = 1) _ (n = 2) then
return 1

else

return Fib(n� 1) + Fib(n� 2)
end

end

15. An arithmetic sequence with di↵erence d is a sequence of numbers for which any
term is d plus the previous term. For example, 5, 8, 11, 14, 17, 20, . . . is a arithmetic
sequence with di↵erence 3. Write an recursive procedure whose input is three
numbers a, d 2 R, and n 2 N, and whose output is the nth term of the arithmetic
sequence whose first term is a and whose di↵erence is d.

Procedure Arithmetic(a, d, n)

begin

if n = 1 then

return a
else

return d+ Arithmetic(n� 1)
end

end
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Section 8.7

1. Count how many times Command is executed.

for i := 1 to 60 do

for j := 1 to i do

Command
end

end

Solution Command is issued once for each
pair (i, j) with 1  j  i  60. Such a pair can
be encoded as a star-and-bar list ⇤ ⇤ ⇤ . . . ⇤ | ⇤ ⇤ ⇤
. . .⇤ |⇤⇤⇤ . . . ⇤ with 60 stars and two bars, where
j is the number of stars before the first bar and
i is the number of stars before the second bar.

Given that we have 1  j, the first list entry must be a star. The remaining entries
form a list with 59 stars and two bars, of length 61. The number of such lists is�
61
2

�
= 1830 so that is the number of times Command is executed.

3. Suppose n is a positive integer. In the following piece of code, how many times is
Command executed? The answer will depend on the value of n.

for i := 0 to n do

for j := 0 to i do
for j := 0 to j do

for ` = 0 to k do

Command
end

end

end

end

Solution: Command is executed for each integer combination of i, j, k and ` for
which 0  `  k  j  i  n. We can model such combinations with lists of n
stars and 4 bars ⇤ ⇤ ⇤| ⇤ ⇤| ⇤ | ⇤ ⇤| ⇤ ⇤ · · · ⇤ ⇤⇤ where ` is the number of stars to the
left of the first bar, k is the number of stars to the left of the second bar, j is the
number of stars to the left of the third bar, and i is the number of stars to the left
of the fourth bar. Such a list has length n + 4, and we can make it by choosing 4
out of n+ 4 spots for the bars and filling the rest with stars. Thus there are

�
n+4
4

�

such lists so this is also the number of times Command is executed.

5. Count how many times Command is executed.

for i := 1 to 2017 do

if i is even then

Command
else

Command
Command

end

end

Solution There are 2018/2 = 1009 odd
integers between 1 and 2017, and 1008 even
integers between 1 and 2017. Because Com-
mand gets issued once for every even integer
and twice for every odd integer, it gets exe-
cuted a total of 1009+ 2 · 1008 = 3026 times.

7. How many steps does the bubble sort algorithm (Algorithm 6 on page 212) take if
its input list X = (x1, x2, . . . , xn) is already sorted?

Solution: The if-statement inside the nested for-loops gets executed once for each
pair (i, k) of integers with 1  i  k  n � 1. We can model such pairs as lists
made of n� 1 stars and 2 bars, such that there are i stars before the first bar, and
k before the second bar.
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n�1 stars, and 2 bars

z }| {

| {z }
i stars

| {z }
k stars

⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤| |

For example, ⇤⇤⇤|⇤|⇤⇤ corresponds to (i, k) = (3, 4), whereas ⇤⇤⇤||⇤⇤⇤ corresponds
to (i, k) = (3, 3). Also ⇤|⇤⇤⇤⇤⇤| means (i, k) = (1, 6), and ⇤||⇤⇤⇤⇤⇤ is (i, k) = (1, 1).
Note that because 1  i, the first entry of any such list is a star. Further the length
of any such list is n+1. To make such a list we could choose 2 of the n entries after
the first star for bars, then fill out the remaining entries with stars. The number of
such lists is

�
n
2

�
= n(n�1)

2 = 1
2n

2 � 1
2n. So the if-statement gets executed 1

2n
2 � 1

2n
times (but xi > xi+1 is always false, so the three statements in its body do not get
executed). Thus the algorithm does 1

2n
2 � 1

2n steps.

9. Find the number of steps that Algorithm 2 (page 207) executes for an input of n.

Solution: For each i between 1 and n, it executes 2 steps, to the total number of
steps is 2n.

11. Find the number of steps (in the worst case) that Algorithm 4 (page 210) executes
when the input is a list of length n.

Solution: The algorithm starts by making one assignment (biggest := x1) and then
executes an if-statement n times. Each time the if-statement executes, it does one
boolean computation (biggest < xi) and at worse one assignment (biggest := x1).
Therefore, at worst it makes 1 + 2n steps.

13. Find the number of steps that The division algorithm (Algorithm 7 on page 215)
executes when the input is two positive integers a and b.

Solution: There are 4 stepa outside of the while loop. The while loop goes through⌃
a
b

⌥
iterations, and each iteration executes a boolean computation and two assign-

ments. Thus the answer is 4 + 3
⌃
a
b

⌥
.


