Slope of the

1. (6 points)
$$\int \frac{x^2 - 9x}{x^2} dx = \int \left(\frac{\chi^2}{\chi^2} - \frac{9\chi}{\chi^2}\right) d\chi = \int \left(1 - \frac{9}{\chi}\right) d\chi$$
$$= \left(\chi - 9 \ln|\chi| + C\right)$$

2. (7 points) The graph of a function f(x) passes through the point (2,5), and the tangent line to the graph at any point (x, f(x)) is $m = 4x^3 + 2x + 1$. Find the function f(x).

Know
$$f(x) = 4\chi^{3} + 2\chi + 1$$
,
So $f(x) = \int 4\chi^{3} + 2\chi + 1 d\chi = 4\frac{\chi^{4}}{4} + 2\frac{\chi^{2}}{2} + \chi + C$
i.e. $f(x) = \chi^{4} + \chi^{2} + \chi + C$
Know $5 = f(2) = 2^{4} + 2^{2} + 2 + C \Rightarrow 5 = 22 + C \Rightarrow C = -17$
Answer $f(x) = \chi^{4} + \chi^{2} + \chi - 17$

3. (7 points) A rocket lifting off from the surface of the moon has a constant acceleration of 4 meters per second per second. How high is the rocket 10 seconds after liftoff? (You may assume that its velocity is zero at the instant of liftoff.)

Know a(t) = 4, so velocity is $V(t) = \int a(t)dt = \int 4dt$ = 4t + C, that is V(t) = 4t + C. But o = V(0) = 4t + C, which gives c = 0, so V(t) = 4tNow, the height at time t is $S(t) = \int V(t)dt$ $= \int 4t dt = 2t^2 + C$, i.e. $S(t) = 2t^2 + C$. We know $o = S(0) = 4.0^2 + C$, hence c = 0 and $|S(t) = 2t^2$ Ans $S(0) = 2.10^2 = |200 \text{ meters}|$

1. (6 points)
$$\int \frac{4x^2 - x}{x} dx = \int \frac{\chi(4\chi - 1)}{\chi} d\chi = \int 4\chi - 1 d\chi = 4\chi^2 - \chi + C$$
$$= 2\chi^2 - \chi + C$$

2. (7 points) A rocket lifting off from the surface of the moon has a constant acceleration of 5 meters per second per second. How high is the rocket 10 seconds after liftoff? (You may assume that its velocity is zero at the instant of liftoff.)

$$a(t) = 5$$

 $V(x) = \int a(t)dt = \int 5 dt = 5x + C$
 $K_{now} O = V(0) = 5 \cdot 0 + C$, so $C = 0$. $V(x) = 5x$
Height at time it is $S(x) = \int V(x)dt = \int 5x dt = 5\frac{x^2}{2} + C$
 $K_{now} O = S(0) = \frac{5}{2}0^2 + C$, so $C = 0$,
Therefore $S(t) = \frac{5}{2}t^2$
Height at time $t = 10$ is $S(10) = \frac{5}{2}10^2 = 250$ meters
 $S(0) = 50$

3. (7 points) The graph of a function f(x) passes through the point (2,5), and the tangent line to the graph at any point (x, f(x)) is $m = 3x^2 + 4x + 1$. Find the function f(x).

Know
$$f'(x) = 3x^2 + 4x + 1$$

so $f(x) = \int 3x^2 + 4x + 1 dx = 3\frac{x^3}{3} + 4\frac{x^2}{2} + x + C$
i.e. $f(x) = x^3 + 2x^2 + x + C$
Know $5 = f(z) = 2^3 + 2 \cdot 2^2 + 2 + C \Rightarrow 5 = 18 + C \Rightarrow C = -18$
Answer $f(x) = x^3 + 2x^2 + x - 13$