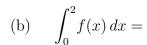
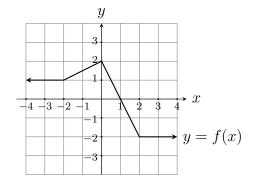

(a)
$$\int_{-3}^{0} f(x) dx =$$

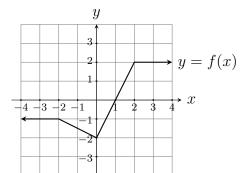



(c) Suppose
$$\int_0^7 f(x) dx = 10$$
. Find $\int_4^7 f(x) dx$.


2. Find $\int_{-1}^{1} 3\sqrt{1-x^2} dx$ by considering area.

3. Write $\lim_{n\to\infty} \sum_{k=1}^{n} \sqrt{2 + \frac{9k}{n}} \frac{9}{n}$ as a definite integral.

(c) Suppose
$$\int_0^7 f(x) dx = 10$$
. Find $\int_2^7 f(x) dx$.


2. Find $\int_0^1 3\sqrt{1-x^2} dx$ by considering area.

3. Write $\lim_{n\to\infty} \sum_{k=1}^n \sqrt{2 + \frac{8k}{n}} \frac{8}{n}$ as a definite integral.

(a)
$$\int_{-3}^{0} f(x) \, dx =$$

(c) Suppose
$$\int_0^7 f(x) dx = 3$$
. Find $\int_3^7 f(x) dx$.

2. Find $\int_{-1}^{1} 5\sqrt{1-x^2} dx$ by considering area.

3. Write $\lim_{n\to\infty} \sum_{k=1}^{n} \ln\left(1+\frac{4k}{n}\right) \frac{4}{n}$ as a definite integral.

(a)
$$\int_{-3}^{0} f(x) dx =$$

(b)
$$\int_{0}^{4} f(x) dx =$$

(c) Suppose
$$\int_0^7 f(x) dx = 10$$
. Find $\int_4^7 f(x) dx$.

2. Find $\int_0^1 5\sqrt{1-x^2} dx$ by considering area.

3. Write $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{1}{2+\frac{5k}{n}} \cdot \frac{5}{n}$ as a definite integral.