Directions: Find the limits. Show all steps. Simplify your answer.

1. $\lim _{x \rightarrow 5 \pi / 6} \tan (x)=\tan (5 \pi / 6)=\frac{\sin (5 \pi / 6)}{\cos (5 \pi / 6)}=\frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}}=-\frac{1}{2} \cdot \frac{2}{\sqrt{3}}=-\frac{1}{\sqrt{3}}$

2. $\lim _{x \rightarrow 0} \frac{(3 x-6) \sin (x)}{x^{2}-2 x}=\lim _{x \rightarrow 0} \frac{3(x-2) \sin (x)}{x(x-2)}=\lim _{x \rightarrow 0} \frac{3 \sin (x)}{x}=3 \lim _{x \rightarrow 0} \frac{\sin (x)}{x}=3 \cdot 1=3$
3. $\quad \lim _{x \rightarrow 0} \sin ^{-1}\left(\frac{\sin (x)}{x}\right)=\sin ^{-1}\left(\lim _{x \rightarrow 0} \frac{\sin (x)}{x}\right)=\sin ^{-1}(1)=\left(\begin{array}{c}\text { angle } \theta \text { for which } \\ -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \\ \text { and } \sin (\theta)=1\end{array}\right)=\frac{\pi}{2}$
4. State the intervals on which the function $f(x)=\frac{x}{e^{x}-3}$ is continuous.

This is a function x, continuous on its domain (all real numbers) divided by a function $e^{x}-3$ continuous on its domain (all real numbers). Therefore the quotient will be continuous on its domain, which is all real numbers except those for which $e^{x}-3=0$. Solving this,

$$
\begin{aligned}
e^{x}-3 & =0 \\
e^{x} & =3 \\
\ln \left(e^{x}\right) & =\ln (3) \\
x & =\ln (3)
\end{aligned}
$$

Thus the domain of f is all real numbers except $\ln (3)$.
Answer: f is continuous on the intervals $(-\infty, \ln (3)) \cup(\ln (3), \infty)$

Directions: Find the limits. Show all steps. Simplify your answer.

1. $\lim _{x \rightarrow \frac{7 \pi}{4}} \sec (x)=\sec (7 \pi / 4)=\frac{1}{\cos (7 \pi / 4)}=\frac{1}{\frac{\sqrt{2}}{2}}=\frac{2}{\sqrt{2}}=\frac{2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{2 \sqrt{2}}{2}=\sqrt{2}$

2. $\lim _{x \rightarrow 0} \frac{6 \sin (x)}{x^{3}+7 x}=\lim _{x \rightarrow 0} \frac{6 \sin (x)}{\left(x^{2}+7\right) x}=\lim _{x \rightarrow 0} \frac{6}{\left(x^{2}+7\right)} \cdot \frac{\sin (x)}{x}=\lim _{x \rightarrow 0} \frac{6}{\left(x^{2}+7\right)} \cdot \lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\frac{6}{0^{2}+7} \cdot 1=\frac{6}{7}$
3. $\lim _{x \rightarrow 2} \tan ^{-1}\left(\frac{x^{2}-3 x+2}{x^{2}-5 x+6}\right)=\tan ^{-1}\left(\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x^{2}-5 x+6}\right)=\tan ^{-1}\left(\lim _{x \rightarrow 2} \frac{(x-1)(x-2)}{(x-3)(x-2)}\right)$

$$
=\tan ^{-1}\left(\lim _{x \rightarrow 2} \frac{x-1}{x-3}\right)=\tan ^{-1}\left(\frac{2-1}{2-3}\right)=\tan ^{-1}\left(\frac{1}{-1}\right)=\tan ^{-1}(-1)=\left(\begin{array}{c}
\text { angle } \theta \text { for which } \\
-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \\
\text { and } \tan (\theta)=-1
\end{array}\right)=\begin{array}{r}
-\frac{\pi}{4} \\
\hline
\end{array}
$$

4. State the intervals on which the function $f(x)=\frac{\sin (x)}{x}$ is continuous. This is a function $\sin (x)$, continuous on its domain (all real numbers) divided by a function x continuous on its domain (all real numbers). Therefore the quotient will be continuous on its domain, which is all real numbers except $x=0$. Thus the domain of f is all real numbers except 0 .

Answer: f is continuous on the intervals $(-\infty, 0) \cup(0, \infty)$

