1. Consider the functions $f(x) = e^x + \frac{x^3}{3}$ and $g(x) = e^x + x$. Find all x for which the tangent line to the graph of y=f(x) at (x, f(x)) is parallel to the tangent line to the graph of y=g(x) at (x, g(x)).

Solve
$$f(x) = g(x)$$

 $e^{x} + x^{2} = e^{x} + 1$
 $x^{2} = 1$
 $x^{2} - 1 = 0$
 $(x-1)(x+1) = 0$

Tangents are parallel at
$$x = 1$$
 and $x = -1$.

- 2. The graph of a function f(x) is shown below.
 - (a) Using the same coordinate axis, sketch the graph of its derivative f'(x)
 - (b) At which x values is f(x) **not** differentiable?

1. Consider the functions $f(x) = e^x + x^2$ and $g(x) = e^x + x$. Find all x for which the tangent line to the graph of y=f(x) at (x, f(x)) is parallel to the tangent line to the graph of y=g(x) at (x, g(x)).

Solve
$$f(x) = g(x)$$

 $e^{x} + 2x = e^{x} + 1$
 $2x = 1$
 $x = \frac{1}{2}$

Tangents are parallel at x = 1/2.

- 2. The graph of a function f(x) is shown below.
 - (a) Using the same coordinate axis, sketch the graph of its derivative f'(x)
 - (b) At which x values is f(x) **not** differentiable?

At x = -3 and x = 2

