- 1. This problem concerns the function $f(x) = 4 + 2e^x \sqrt[3]{x^2}$. $= 4 + 2e^x 4 +$
 - (a) Find f'(x).

$$f(x) = 0 + 2e^{x} - \frac{2}{3}x^{-\frac{1}{3}} = 2e^{x} - \frac{1}{3\sqrt[3]{x}}$$

(b) State the intervals on which the function f(x) is differentiable.

f(0) is not defined (division by 0) but f(x) is defined for all other values of x.

f is differentiable on (- 00, 0) U (0, 00)

- The graph of a function f(x) is shown below. 2.
 - (a) Using the same coordinate axis, sketch the graph of its derivative f'(x)
 - (b) At which x values is f(x) not differentiable?

- 1. This problem concerns the function $g(x) = 3\sqrt[3]{x^2} 6 + 2e^x$. $= 3\chi^{\frac{2}{3}} 6 + 2e^{\chi}$
 - (a) Find g'(x).

$$g'(x) = 3 \cdot \frac{2}{3} x^{-1/3} - 0 + 2e^{x} = \frac{2}{\sqrt[3]{x}} + 2e^{x}$$

(b) State the intervals on which the function g(x) is differentiable.

:
$$g(x)$$
 is differentiable on $(-\infty,0)$ $v(0,\infty)$

 $\chi = -2$

- 2. The graph of a function g(x) is shown below.
 - (a) Using the same coordinate axis, sketch the graph of its derivative g'(x)
 - (b) At which x value(s) is g(x) not differentiable?

