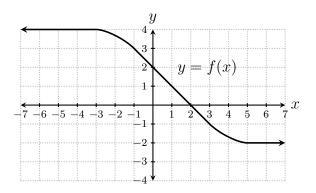

1. Suppose $f(x) = x^2 \cos(x)$. Find f'(x).

Name: _

2. Suppose
$$y = \frac{x^2 - 24}{x^2 - 5x + 4}$$
. Find $\frac{dy}{dx}$.

3. Suppose $y = \frac{\tan(x)}{1 + xe^x}$. Find y'.

4. A function f(x) is graphed below. Suppose $g(x) = f(x) \cdot e^x$. Find g'(0).

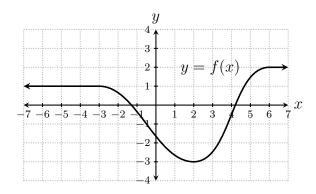

1. Suppose $f(x) = x^3 \tan(x)$. Find f'(x).

Name: _

2. Suppose $y = \frac{x^2 - 5x + 4}{x^2 - 24}$. Find $\frac{dy}{dx}$.

3. Suppose $y = \frac{1 + xe^x}{\sin(x)}$. Find y'.

4. A function f(x) is graphed below. Suppose $g(x) = f(x) \cdot e^x$. Find g'(1).

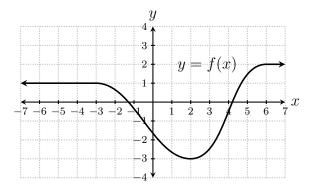

1. Suppose $f(x) = e^x \sqrt{x}$. Find f'(x).

Name: _

2. Suppose
$$y = \frac{3x^2 + 2}{x - 1}$$
. Find $\frac{dy}{dx}$.

3. Suppose
$$y = \frac{x^2 + 1}{x \cos(x)}$$
. Find y' .

4. A function f(x) is graphed below. Suppose $g(x) = \frac{f(x)}{2x+1}$. Find g'(2).



1. Suppose $f(x) = x^5 \sec(x)$. Find f'(x).

2. Suppose
$$y = \frac{x^2 - 24}{x^2 - 5x + 4}$$
. Find $\frac{dy}{dx}$.

3. Suppose $y = \frac{x \sin(x)}{1 + 3x}$. Find y'.

4. A function f(x) is graphed below. Suppose $g(x) = f(x) \cdot (2x+1)$. Find g'(6).

