1. In this problem $y = xe^x + x^2$.

(a)
$$\frac{dy}{dx} =$$

(b)
$$\frac{d^2y}{dx^2} =$$

- 2. Find the derivative of $y = \cot(3x^2 + x)$.
- 3. Find the derivative of $y = x^2 \cos(\pi x)$.

4. Information about functions f(x), f'(x), g(x) and g'(x) is tabulated below. Let h(x) = f(g(x)).

(a)
$$h(2) =$$

(b)
$$h'(2) =$$

x	0	1	2	3	4	5
f(x)	-4	-2	0	1	1	3
f'(x)	2	1	1	3	5	-1
g(x)	8	9	5	4	0	-4
g'(x)	0	-1	-1	-3	-4	-4

Find the **equation** of the tangent line to y = h(x) at (2, h(2)). (c)

1. In this problem $y = 3x^2 + \cos(5x)$.

(a)
$$\frac{dy}{dx} =$$

(b)
$$\frac{d^2y}{dx^2} =$$

2. Find the derivative of $y = \frac{\tan(\pi x)}{x}$.

- 3. Find the derivative of $y = \sin(3x^2 + x)$.
- 4. Information about functions f(x), f'(x), g(x) and g'(x) is tabulated below. Let h(x) = f(g(x)).

(a)
$$h(3) =$$

(b)	h'(3)	_

x	0	1	2	3	4	5
f(x)	-4	-2	0	1	1	3
f'(x)	2	1	1	3	5	-1
g(x)	8	9	5	4	0	-4
g'(x)	0	-1	-1	-3	-4	-4

(c) Find the **equation** of the tangent line to y = h(x) at (3, h(3)).