



Name: \_\_\_\_\_

This is a closed-notes, closed book exam. No calculators, no computers, etc. Put phones away.

Answer the questions in the space provided, showing work. Put your final answer in a box when appropriate.

---

1. Find the limits using any appropriate method. Give an answer of  $\infty$  or  $-\infty$  if necessary.

(a)  $\lim_{x \rightarrow 1} \frac{\ln(x)}{x - 1}$

(b)  $\lim_{x \rightarrow 2} \frac{3}{(x - 2)^2}$

2. Find the derivatives of the functions below. You do NOT need to simplify your answer.

(a)  $y = \frac{6 - x^3}{x + 5}$

(b)  $y = e^x - x^e + e^e$

(c)  $y = \sin^{-1}(x) \cdot \sec(x)$

(d)  $y = (\ln(x^2 + 4))^3$

3. Given the equation  $6x^2 + \ln(y) = 5 + 3y^2$ , find  $y'$

4. Information about two functions  $f$  and  $g$  is given in the table below.

| $x$     | 0 | 3  | 5 | 8 |
|---------|---|----|---|---|
| $f(x)$  | 9 | 6  | 5 | 4 |
| $f'(x)$ | 2 | -7 | 4 | 7 |
| $g(x)$  | 2 | 3  | 0 | 0 |
| $g'(x)$ | 6 | 5  | 3 | 9 |

(a) Suppose  $h(x) = \frac{f(x)}{g(x)}$ . Find  $h'(0)$ .

(b) Let  $k$  be a function for which  $k'(x) = f(g(x))$ . Is the graph of  $k(x)$  concave up or down at  $x = 5$ ?

5. A particle moves along the  $x$ -axis so that its **velocity** at time  $t$  is given by  $v(t) = 3t^2 - 14t + 6t^{1/2}$ .

(a) At time  $t = 4$ , is the particle moving to the right or to the left? Explain.

(b) If the particle is at  $x = 10$  when  $t = 0$ , what is the position of the particle at  $t = 4$  seconds?

6. Sketch a graph of a function  $y = f(x)$ , whose domain is  $(-\infty, \infty)$ , that has all of the following properties:

- $\lim_{x \rightarrow -1^-} f(x) = 1$

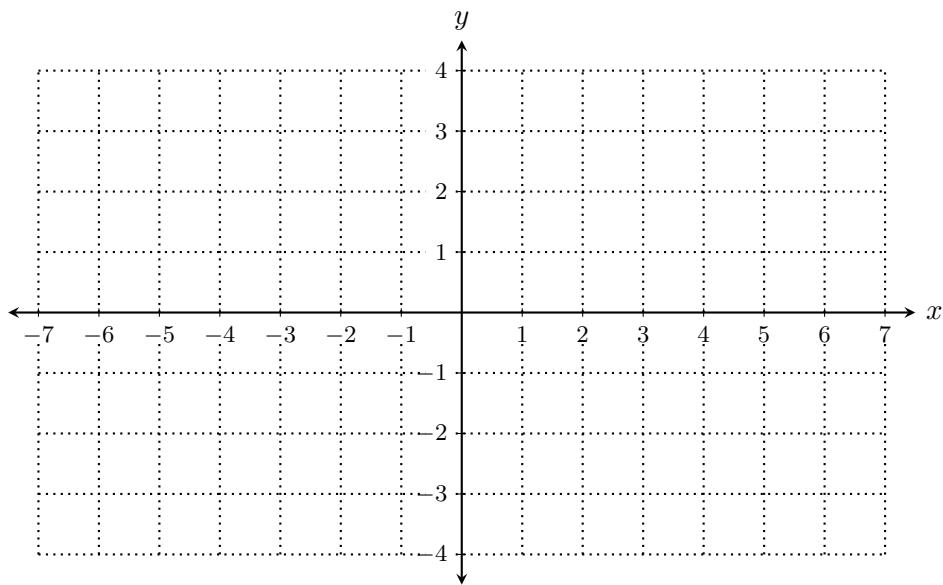
- $f(-1) = 2$

- $\lim_{x \rightarrow -1^+} f(x) = 2$

- $\lim_{x \rightarrow 2} f(x) = 0$

- $\lim_{x \rightarrow -\infty} f(x) = 1$

- $\lim_{x \rightarrow \infty} f(x) = \infty$



7. This problem concerns the function  $f(x) = x^3 + 6x^2 - 36x - 9$ .

(a) Find the intervals on which  $f(x)$  increases and the intervals on which it decreases.

(b) Locate any local extrema of  $f(x)$  (i.e., give the  $x$  value and say if there is a local max or min there).

(c) Find the intervals on which  $f(x)$  is concave up, and the intervals on which it is concave down.

8. Find the equation of the line tangent to the curve  $f(x) = 3\sqrt[3]{x^2}$  at the point  $(8, 12)$ . Show all work.

9. Find the following integrals. If you make a substitution, clearly state  $u$  and  $du$ .

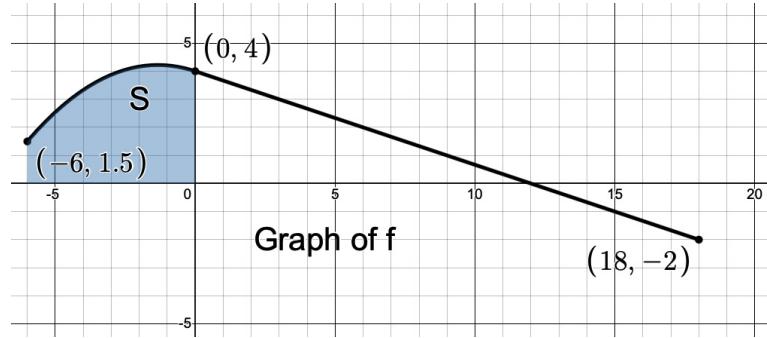
(a)  $\int_{-2}^1 (9x^2 - 4x + 1) dx$

(b)  $\int \frac{8x + 6}{\sqrt{4x^2 + 6x - 9}} dx$

(c)  $\int \frac{9x - 1}{9x^2 - 2x + 5} dx$

(d)  $\int \frac{\cos(x)}{1 + \sin^2(x)} dx$

10. The graph of a differentiable function  $f$  is shown. This function has a horizontal tangent at  $x = -\frac{4}{3}$  and is linear for  $0 \leq x \leq 18$ . The shaded region  $S$  has an area of 21 square units.



Suppose  $g$  is the function defined as  $g(x) = \int_0^x f(t) dt$

(a) Find  $g(-6)$ .

(b) Find  $g(18)$ .

(c) Does the function  $g$  have a local minimum in the interval  $(-6, 18)$ ? Explain.

11. Suppose you need to enclose a rectangular region with a fence. The cost of the fencing for the north and south sides is \$9 per foot, and the cost of the east and west sides is \$6 per foot. You have \$504 to spend on fencing. Find the dimensions of the rectangle that maximize the enclosed area.

12. Find the derivative of the function  $y = \int_3^{\cos(x)} \sqrt{1+t^2} \, dt$