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Name: MATH 200 MIDTERM EXAM

Directions: Closed book, closed notes, no calculators. Put all phones, etc., away.  You will need only a pencil or pen.

1. (10 points) Draw the graph of one function f(z) meeting all of the following conditions.
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2. (24 points) Find the limits.
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3. (6 points) Use a limit definition of the derivative to find the derivative of f(z) = v/x.
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4. (6 points) Find all = for which the tangent to the graph of y = % + % — 2x + 1 has slope 10.

We need to solve the following equation.

y = 10

?+r—-2 = 10
P?4+rx—-12 = 0
(x=3)(z+4) = 0

Thus the slope equals 10 at x = 3 and x = —4. ‘

5. (6 points) Suppose it costs C(x) dollars to build a transmitting tower that is  meters high.
Suppose it happens that C’(100) = 1000. Explain in simple terms what this means.

C’(x) is the rate of change in (dollars per meter) of the cost of building the tower = meters high.

The statement C’(100) = 1000 means that when the tower is 100 meters high (i,e., when x=100),
the cost is changing at a rate of $1000 per meter. At this rate it will cost an extra $1000 to build
the tower one additional meter higher.



6. (35 points) Find the derivatives of these functions. You do not need to simplify your answers.
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7. (7 points) Given the equation yIn(x) + y* = 5z, find /.
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8. (6 points) A spherical balloon is inflated at a rate of 1007 cubic feet per minute.
How fast is the radius increasing at the instant the radius is 5 feet?

Let V be the balloon’s volume and let r be its radius.

v
Know: — = 1007 cubic feet per minute.

dt

d
Want: d_z at the instant r = 5.

4
V = 571'7’3
4
n|v| = b {—7?7"3}
3
dV 4 o dr
E = 537'('7' %
dV dr
2 — Ypp?
dt ™
100 = 47rr2@
dt
100w ﬁ
drr? dt
dr B 25
dt 2

25

d
Answer: When r = 5 the radius is changing at a rate of — =5 = 1 foot per minute
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