
CHAPTER 18

Notation, Examples, Di�erentiability

Let’s pause for a moment to reflect on what we have done in Part 3.
We defined the important idea of the derivative of a function f (x),

which is another function f

0
(x), for which

f

0
(x) = lim

z!x

f (z)° f (x)

z° x

= lim

h!0

f (x+h)° f (x)

h

=

0

B@
Slope of tangent to
graph of y= f (x)

at point (x, f (x))

1

CA .

x

y

x

°
x, f (x)

¢

slope = f

0
(x)

y= f (x)

We remarked that another notation for the derivative of f (x) is D

x

£
f (x)

§
,

and we developed five rules for computing derivatives of certain functions
without resorting to limits. (Here c is a constant.)

Constant Rule: D

x

h
c

i
= 0

Identity Rule: D

x

h
x

i
= 1

Power Rule: D

x

h
x

n

i
= nx

n°1

Sum-Di�erence Rule: D

x

h
f (x)± g(x)

i
= f

0
(x)± g

0
(x)

Constant Multiple Rule: D

x

h
c f (x)

i
= c f

0
(x)

More rules will come. But in this chapter we pause our quest for rules
to discuss some important issues regarding derivatives. We will begin by
describing some of the many di�erent notations for derivatives. Then we
will look at some instructive examples of procedures that will be especially
important later in the course. Finally we will examine what is called
di�erentiability, a property that a function may possess that is related to
whether (or where) its derivative exists.
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18.1 Notation
There are a great many di�erent notations for a function’s derivative. For
example, take a function y= f (x). In addition to the notation f

0
(x)= D

x

£
f (x)

§

we may write f

0
(x) = y

0. Often the symbol d

dx

is used in place of D

x

, so
D

x

£
f (x)

§
= d

dx

£
f (x)

§
. Variants of this include d

dx

£
f (x)

§
= d f

dx

= d y

dx

.
What we are saying is that given a function y= f (x), its derivative can

be denoted in the following ways:

f

0
(x) = y

0 = D

x

£
f (x)

§
= d

dx

h
f (x)

i
= d f

dx

= d y

dx

.

Be attentive to variables. If the function is w = g(z), then its derivative is

g

0
(z) = w

0 = D

z

£
g(z)

§
= d

dz

h
g(z)

i
= dg

dz

= dw

dz

.

If the function is y= h(µ), then its derivative is denoted

h

0
(µ) = y

0 = Dµ

£
h(µ)

§
= d

dµ

h
h(µ)

i
= dh

dµ
= d y

dµ
.

For example, the derivative of the function y= x

3 can be denoted in any
of the following ways:

y

0 = 3x

2

, D

x

£
x

3

§
= 3x

2

,

d

dz

h
x

3

i
= 3x

2

,

d y

dx

= 3x

2

.

The notation f

0
(x) = d y

dx

is very common and (as we’ll see often in this
course) convenient. Figure 18.1 suggests its origin. We will return to the
idea expressed in this picture several times in this book, as the significance
of the notation emerges.

x

y

x

dx

d y

slope = f

0
(x) = d y

dx

y= f (x)

Figure 18.1. The rational for the notation f

0
(x) = d y

dx

. The tangent line to
y= f (x) at

°
x, f (x)

¢
has slope f

0
(x). Draw a right triangle whose hypotenuse

is tangent to y= f (x) at
°
x, f (x)

¢
. Call its side lengths dx and d y, as shown.

The quotient d y

dx

is rise over run for the tangent, so its slope is f

0
(x)= d y

dx

.
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The d y

dx

or y

0 notation comes in handy when we are working with a
function but haven’t designated it with a letter like f or g. For example,
say we are working with the function y = x

3 + x, and need to compute its
derivative. It would be wrong (or at least inconsistent) to say that the
derivative is f

0
(x) = 3x

2 +1, because the function wasn’t called f . But it
makes perfect sense to refer to its derivative as dy

dx

= 3x

2 +1 or y

0 = 3x

2 +1.
But the notations d y

dx

and y

0 do have one unsettling feature. In f

0
(x) there

is an x for the input value, but this is lacking in d y

dx

and y

0. Say y= f (x)= x

3+x,
so f

0
(x)= dy

dx

= y

0 = 3x

2 +1. Then we can, for instance, plug in 2 to f

0
(x) to get

f

0
(2)= 3 ·22 +1= 13.

But where would we plug in the 2 to d y

dx

or y

0? For this the convention is to
write d y

dx

ØØØ
x=2

or y

0ØØ
x=2

, each of which means the same thing as f

0
(2). Thus

d y

dx

ØØØØ
x=2

= 3 ·22 +1 = 13.

Now that we’ve discussed notation, let’s look at some examples. They
will illustrate not just our new notation, but also some common procedures
that you’ll find yourself carrying out often later in the course.

18.2 Some Instructive Examples
One particularly useful procedure in applications is to find the values of x

for which the tangent line to the graph y= f (x) of a function at
°
x, f (x)

¢
has

slope 0. Our first example examines this.

Example 18.1 Find all x for which the tangent to y = 2x

3 °3x

2 °36x at°
x, f (x)

¢
is horizontal.

Solution: The tangent line’s slope at
°
x, f (x)

¢
equals d y

dx

= 6x

2 ° 6x ° 36.
We want to find the x for which the tangent line at

°
x, f (x)

¢
is horizontal,

that is, has slope 0. This happens provided that d y

dx

= 0, or 6x

2 °6x°36= 0.
So we can find x by solving

6x

2 °6x°36= 0.

Dividing by 6 and factoring gives:
x

2 ° x°6 = 0

(x+3)(x°2)= 0

Thus the tangent line has slope 0 (is
horizontal) at x =°3 and x = 2, This
is supported by the graph.

x

y

3

°2

y= 2x

3°3x

2°36x
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There will be occasions in this course where you will need to find the
equation of a tangent line, not just its slope. Let’s look at such an example.
Example 18.2 Find the equation of the tangent line to y= 4°2

p
x at the

point (1,2).
Solution: Though it’s not necessary for the solution of this problem, let’s
start by drawing a graph. We can get a quick sketch of the graph of y= 4°2

p
x

by graph shifting. It is the familiar graph y=p
x reflected across the x-axis,

scaled vertically by a factor of 2, and moved up 4 units, as shown below.

x

y

(1,2)

y= 4°2

p
x

1

Notice that the point (1,2) really is on the graph of y= 4°2

p
x, because when

x = 1, we have y = 4°2

p
1 = 2. The tangent line at (1,2) is sketched in. We

need to find its equation y= mx+b.
This requires finding its slope m. Since the derivative gives slope, we

need to compute the derivative of y= 4°2

p
x. Write this as y= 4°2x

1/2 so
that we are ready to use the power rule. The derivative of y= 4°2x

1/2 is

d y

dx

= 0°2 · 1

2

x

1/2°1 = °x

°1/2 = ° 1

p
x

.

Thus the slope of the tangent to y = 4°2

p
x at any x is d y

dx

= 1p
x

. We are
interested in the tangent at x=1, so it’s slope is

m = d y

dx

ØØØØ
x=1

= ° 1

p
1

= °1.

So the tangent line in question has slope m =°1 and it passes through the
point (1,2). Using the point-slope formula for the equation of a line, we get

y° y

0

= m(x° x

0

)

y°2 = °1(x°1)

y = °x+3

Answer: The tangent line to y= 4°2

p
x at (1,2) has equation y=°x+3.
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Example 18.3 Let f (x)= 3x

2+200 and g(x)= 2x

3°72x. Find all x for which
the slope of the tangent to y= f (x) at

°
x, f (x)

¢
equals the slope of the tangent

to y= g(x) at
°
x, g(x)

¢
.

Solution: The slope of the tangent to y= f (x) at
°
x, f (x)

¢
is f

0
(x). The slope

of the tangent to y= g(x) at
°
x, g(x)

¢
is g

0
(x). Thus we seek all x for which

f

0
(x) = g

0
(x)

6x+0 = 6x

2 °72.

So we need to solve this equation for x. This is a quadratic, so let’s try
getting 0 to one side and factoring.

0 = 6x

2 °6x°72

0 = x

2 ° x°12 (divide both sides by 6)
0 = (x+3)(x°4)

The solutions are x=°3 and x=4. These are the values for which f

0
(x)= g

0
(x).

Answer: The tangents to functions f (x)= 3x

2+200 and g(x)= 2x

3°72x have
equal slopes at x =°4 and x = 3.

x

y

f (x)= 3x

2+200

g(x)= 2x

3°72x

°3 4

100

The above graphs o�er visual evidence that our answer is correct.

Problems like the ones above will be a continual theme in this course.
The functions will become more complex and varied, and deeper meanings
and applications will emerge. For now it is good to get some practice by
working the exercises.
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18.3 Di�erentiability
Consider the function f (x)= 3

p
x, graphed below. Apparently, every tangent

line to its graph has positive slope, with one possible exception. The tangent
at the origin (0,0) appears to be vertical, with undefined slope.

x

y

f (x)= 3

p
x

Looking at the graph close up with a powerful magnifying glass would
reveal that it looks like a line with positive slope everywhere except at (0,0).
There it looks like a vertical line, as shown below.

x

y

f (x)= 3

p
x

Based on this evidence, we would expect that the derivative f

0
(x) (which

gives slope) is positive for all values of x except for x = 0. We would expect
f

0
(0) to be undefined, because a vertical line has undefined slope. Indeed,

by the power rule, the derivative of f (x)= 3

p
x = x

1/3 is

f

0
(x)= 1

3

x

1/3°1 = 1

3

x

°2/3 = 1

3x

2/3

= 1

3

3

p
x

2

.

As expected, f

0
(x) is positive for any nonzero x because the squared 3

p
x

2 in
the denominator is positive. And as expected, f

0
(0)= 1

3

3

p
0

2

= 1

0

is undefined.
So here is a function f whose domain is all real numbers (°1,1), but

the domain of its derivative f

0 is (°1,0)[ (0,1). That is, f (0) is defined, but
f

0
(0) is not defined. In such a situation we say f is di�erentiable at any

x 6= 0, but that is is not di�erentiable at 0. Here is the exact definition.

Definition 18.1 We say function f is di�erentiable at a number a if
f

0
(a) is defined. Otherwise f is not di�erentiable at a.

Equivalently, f is di�erentiable at a number a if f

0
(a)= lim

z!a

f (z)° f (a)

z°a

exists,
and it is not di�erentiable if this limit DNE.
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If a function is di�erentiable at all numbers in an interval, then we
say that it is di�erentiable on the interval. Thus the function f (x)= 3

p
x

from the previous page is di�erentiable on the intervals (°1,0) and (0,1).
That is, it is di�erentiable on (°1,0)[ (0,1).

So we have seen that if the graph of f has a vertical tangent line at x = a,
then f is not di�erentiable at a. There is another way that a function might
not be di�erentiable. To understand it consider the function g(x) = 3

p
x

2,
which is the square of f (x)= 3

p
x. Its graph is somewhat similar to the graph

of y = 3

p
x except that all y values are squared and thus become positive.

Note that the graph of g has a sharp corner or “cusp” at (0,0).

x

y

g(x)= 3

p
x

2

Taking a powerful magnifying glass and looking at the graph close-up
at (0,0) would reveal that the graph does not look like a straight line there
at all. It looks like a bent line. Here the problem is not that the tangent
line is vertical, but that there is no tangent line at all!

x

y

g(x)= 3

p
x

2

So something strange is going to happen with g

0
(0). Let’s find out. By

the power rule, the derivative of g(x)= 3

p
x

2 = x

2/3 is

g

0
(x)= 2

3

x

2/3°1 = 2

3

x

°1/3 = 2

3x

1/3

= 2

3

3

p
x

.

Indeed, g

0
(0)= 2

3

3

p
0

= 1

0

is not defined. But g

0
(x) is defined for x 6= 0. Therefore

this function g is not di�erentiable at x = 0, but it is di�erentiable at any
other x. Thus g is di�erentiable on (°1,0)[ (0,1).
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Our next example is another familiar function that has a cusp, the
absolute value function h(x)= |x|, graphed below, left. (If you are unsure of
why the graph looks this way, see the discussion on page 19.) The graph is a
line with slope °1 meeting a line with slope 1 at a right angle at the origin.

x

y

h(x)= |x|

x

y

h(x)= |x|

h

0
(x)

x

y

h(x)= |x|

Therefore (because the derivative gives slope) we have h

0
(x) =°1 for x < 0,

and h

0
(x) = 1 for x > 0. Thus |x| is di�erentiable on (°1,0)[ (0,1). The

derivative h

0 is graphed above (middle).
But is |x| di�erentiable at 0? That is, is h

0
(0) defined? By definition,

h

0
(0)= lim

z!0

|z|°|0|
z°0

, so we are asking whether this limit exists. Exercise 23 asks
you to do the left- and right-hand limits. You will find that lim

z!0

°
|z|°|0|

z°0

=°1

and lim

z!0

+
|z|°|0|

z°0

= 1. These two limits don’t agree, so h

0
(0) = lim

z!0

|z|°|0|
z°0

DNE.
Thus the function h(x)= |x| is not di�erentiable at 0.

One important fact is that di�erentiability implies continuity, as the
theorem below asserts. This makes sense intuitively: If f is di�erentiable
at a, then its graph looks line a line there, so it’s not going to “jump” at a.
Theorem 18.1 If f is di�erentiable at x = a, then f is continuous at x = a.

Proof. Suppose f is di�erentiable at a. Then f

0
(a) = lim

z!a

f (z)° f (a)

z°a

, and this
limit exists. We must show that f is continuous at x = a. So by definition of
continuity (Definition 11.1), we must show lim

z!a

f (z)= f (a). Notice that

f (z) = f (z)° f (a)

z°a

(z°a)+ f (a).

Taking limits of both sides and using limit laws,

lim

z!a

f (z) =
µ
lim

z!a

f (z)° f (a)

z°a

∂
·
≥
lim

z!a

(z°a)

¥
+ lim

z!a

f (a)

= f

0
(a) ·0+ f (a)= f (a).

Thus lim

z!a

f (z)= f (a), which means f is continuous at a. Á
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Theorem 18.1 says that if f is di�erentiable at x = a, then f is continuous
at x = a. In particular, this means that if f is not continuous at x = a, then it
is not di�erentiable at x = a. This makes sense because if f is discontinuous
at x = a, then its graph—close up at a—certainly does not look like a line.

In summary, we have seen three ways that a function can fail to be
di�erentiable: because the tangent is vertical, because there is no tangent
and because the function is discontinuous.

For example, the function graphed below is not di�erentiable at x = a

because its tangent is vertical there. It is not di�erentiable at x = b because
there is no tangent there. It is not di�erentiable at x = c because it is not
continuous there. We would say that this function is di�erentiable on the
intervals (°1,a), (a,b), (b, c) and (c,1).

x

y

y= f (x)

a

b

c

Naturally, in a calculus course we want our functions to be di�erentiable.
But many functions that have derivatives will not be di�erentiable at certain
points, as we have seen. Later—particularly in Part 4 of this text—we will
see that the points at which a function is not di�erentiable can reveal
valuable information in certain circumstances.

Exercises for Chapter 18
These exercises are cumulative, covering all material from chapters 16 to 18.
In Exercises 1–6, find all x for which the tangent to the given function at

°
x, f (x)

¢

is horizontal.

1. f (x)= 2x

3 °3x

2 °12x+4 2. f (x)= 2

p
x° x

3. y= x

3 °4x

2 +5x 4. y= x

3 +3x

2 + x+1

5. y= 1

x

+ x 6. y= 1

x

2

+ x

2

7. Find all x for which the tangent to the graph of y= x

3

3

+ 3x

2

2

°2x+1 has slope 8.

8. Find all x for which the tangent to the graph of y= x

3

3

+ 3x

2

2

°2x+1 has slope 7.
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In Exercises 9–12, two functions f and g are given. Find all x for which the tangent
to y= f (x) at (x, f (x)) is parallel to the tangent to y= g(x) at (x, g(x)).

9. y= x

2 +2x

3 and y= x

2 °2x

3 +48x 10. f (x)= x

3 °3x and g(x)= 3x

2 +6x

11. y= x

2 and y= x

3 12. y= x

2 and y=p
x

In Exercises 13–16, find the equation of the line tangent to the graph of the function
at the given point.

13. f (x)= x

2 °3x+4 at (3,4) 14. f (x)=p
x at (9,3)

15. f (x)= 1

x

+ x at
°
2, f (2)

¢
16. f (x)= 1

p
x

at
°
9, f (9)

¢

17. For the function graphed below,
find lim

h!0

f (3+h)° f (3)

h

and lim

h!0

f (h)° f (0)

h

.

x

°4 °3 °2 °1 1 2 3 4

y

°4

°3

°2

°1

1

2

3

4

y= f (x)

18. For the function graphed below,
find lim

h!0

f (°3+h)° f (°3)

h

and lim

h!0

f (2+h)° f (2)

h

.

x

°4 °3 °2 °1 1 2 3 4

y

°4

°3

°2

°1

1

2

3

4

y= f (x)

19. A function f (x) is graphed.
below. Sketch the graph of f

0
(x).

x

°7 °6 °5 °4 °3 °2 °1 1 2 3 4 5 6 7

y

°4

°3

°2

°1

1

2

3

4

y= f (x)

20. A function f (x) is graphed
below. Sketch of the graph of f

0
(x).

x

°7 °6 °5 °4 °3 °2 °1 1 2 3 4 5 6 7

y

°3

°2

°1

1

2

3

y= f (x)

21. A function f (x) is graphed
below. Sketch the graph of f

0
(x).

x

°7 °6 °5 °4 °3 °2 °1 1 2 3 4 5 6 7

y

°4

°3

°2

°1

1

2

3

4

y= f (x)

22. A function f (x) is graphed
below. Sketch the graph of f

0
(x).

x

°7 °6 °5 °4 °3 °2 °1 1 2 3 4 5 6 7

y

°4

°3

°2

°1

1

2

3

4

y= f (x)
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23. Consider the absolute value function h(x) = |x|. We have not developed a rule
for its derivative, but we can find one with the limit definition of the derivative.
For x < 0, use the limit definition to show that h

0
(x)=°1. For x > 0, use the limit

definition to show that h

0
(x)= 1. Conclude that

h

0
(x)=

Ω °1 if x < 0

1 if x > 0.

Then investigate di�erentiability at x = 0. Conclude that f

0
(0) is not defined

because in its limit definition h

0
(0)= lim

z!0

|z|°|0|
z°0

, the left- and right-hand limits are
unequal, so the limit DNE.

Exercise Solutions for Chapter 18

1. Suppose f (x)= 2x

3 °3x

2 °12x+4. Find all x for which the tangent to y= f (x) at
the point (x, f (x)) is horizontal.

The tangent line at (x, f (x)) has slope f

0
(x), so we need to solve f

0
(x)= 0.

6x

2 °6x°12 = 0

x

2 ° x°2 = 0

(x°2)(x+1) = 0

Therefore the tangent line is horizontal (has slope 0) for x = 2 and x =°1.

3. Find all x for which the tangent to y= x

3 °4x

2 +5x at (x, f (x)) is horizontal.

The answer will be the solutions of y

0 = 0, which is 3x

2 °8x+5= 0. This factors
as (x°1)(3x°5)= 0. Therefore the tangent is horizontal at the two values x = 1

and x = 5/3.

5. Find all x for which the tangent to y= 1

x

+ x at the point (x, f (x)) is horizontal.

The answer will be the solutions of y

0 = 0, that is, ° 1

x

2

+1= 0, or 1= 1

x

2

. Cross-
multiplying yields x

2 = 1, so there are two solutions x =±1.

7. Find all x for which the tangent to the graph of y= x

3

3

+ 3x

2

2

+°2x+1 has slope 8.

The answer will be the solutions of the equation y

0 = 8, that is,

x

2 +3x°2 = 8

x

2 +3x°10 = 0

(x+5)(x°2) = 0

So the tangent has slope 8 at the points x =°5 and x = 2.
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9. Suppose f (x)= x

2+2x

3 and g(x)= x

2°2x

3+48x. Find all x for which the tangent
to y= f (x) at (x, f (x)) is parallel to the tangent to y= g(x) at (x, g(x)).

The tangent lines being parallel means they have the same slope, so for this we
need to solve f

0
(x)= g

0
(x).

2x+6x

2 = 2x°6x

2 +48

12x

2 = 48

x

2 = 4

x = ±2

Thus the tangent lines have the same slope for x = 2 and x =°2.

11. Find the values of x at which y= x

2 and y= x

3 have the same slope.

Call these two functions f (x)= x

2 and g(x)= x

3. The answer to the question will
be the solutions of the equation f

0
(x) = g

0
(x), which is 2x = 3x

2, or 2x°3x

2 = 0.
This factors as x(2°3x)= 0, so the solutions are x = 0 and x = 2/3.
Thus the functions have the same slope at x = 0 and x = 2/3.

13. Find the equation of the line tangent to f (x)= x

2 °3x+4 at the point (3,4).

The slope of the tangent line to f (x) at (x, f (x)) is f

0
(x)= 2x°3. Thus the tangent

line at (3,4) has slope m = f

0
(3)= 2 ·3°3= 3. By the point-slope formula for a line,

the equation of the tangent line is

y° y

0

= m(x° x

0

)

y°4 = 3(x°3)

y = 3x°5. √° (answer)

15. Find the equation of the line tangent to f (x)= 1

x

+ x at
°
2, f (2)

¢
.

The line goes through
°
2, f (2)

¢
= (2,1/2+2)= (2,5/2). The slope at x is f

0
(x)= °1

x

2

+1,

so the slope at x = 2 is f

0
(2)= °1

2

2

+1= 3

4

. By the point-slope formula, tangent is

y° y

0

= m(x° x

0

)

y° 5

2

= 3

4

(x°2)

y = 3

4

x+1. √° (answer)
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17. For the function graphed below, find lim

h!0

f (3+h)° f (3)

h

and lim

h!0

f (h)° f (0)

h

.

Recall that lim

h!0

f (x+h)° f (x)

h

= f

0
(x).

Thus lim

h!0

f (3+h)° f (3)

h

= f

0
(3)=°2 because the tangent line

to f (x) at x = 3 (sketched in) has slope °2.

Also lim

h!0

f (h)° f (0)

h

= lim

h!0

f (0+h)° f (0)

h

= f

0
(0) = 0 because the

tangent line to f (x) at x = 0 (sketched in) has slope 0.

x

°4 °3 °2 °1 1 2 3 4

y

°4

°3

°2

°1

1

2

3

4

y= f (x)

19. A function f (x) is graphed.
below. Sketch the graph of f

0
(x).

x

°7 °6 °5 °4 °3 °2 °1 1 2 3 4 5 6 7

y

°4

°3

°2

°1

1

2

3

4

y= f (x)

y= f

0
(x)

21. A function f (x) is graphed
below. Sketch the graph of f

0
(x).

x

°7 °6 °5 °4 °3 °2 °1 1 2 3 4 5 6 7

y

°4

°3

°2

°1

1

2

3

4

y= f (x)

y= f

0
(x)

23. Find the derivative of the absolute value function h(x)= |x| and investigate its
di�erentiability at x = 0.

We use the limit definition h

0
(x)= lim

z!x

h(z)°h(x)

z°x

= lim

z!x

|z|°|x|
z°x

.
First suppose x < 0. In the limit, z approaches the negative number x, so we
can assume that z is negative too. Then |x| = °x and |z| = °z. In this case
h

0
(x)= lim

z!x

|z|°|x|
z°x

= lim

z!x

°z°(°x)

z°x

= lim

z!x

°(z°x)

z°x

= lim

z!x

°1=°1.

Next suppose x > 0. In the limit, z approaches the positive number x, so we
can assume that z is positive too. Then |x| = x and |z| = z. In this case h

0
(x) =

lim

z!x

|z|°|x|
z°x

= lim

z!x

z°x

z°x

= lim

z!x

1= 1.

We have now shown that h

0
(x)=

Ω °1 if x < 0

1 if x > 0.
Next we investigate di�erentiability at x = 0. Note that h

0
(0)= lim

z!0

|z|°|0|
z°0

= lim

z!0

|z|
z

,
provided the limit exists. Let’s examine this limit from the left and from the
right. From the left, lim

z!0

°
|z|
z

= lim

z!0

°z

z

= °1. From the right, lim

z!0

+
|z|
z

= lim

z!0

z

z

= 1.
Since the limits do not agree, it follows that h

0
(0)= lim

z!0

|z|
z

DNE. Thus h

0
(0) is not

defined, and hence |x| is not di�erentiable at x = 0.


