
CHAPTER 38

Antiderivatives

We are at a major turning point of the course. Up until now our primary
focus has been on the process of di�erentiation. Given a function

f (x), find its derivative f 0(x).

f (x) f 0(x)
differentiation

Starting now, we shift our focus to the reverse process. If you know the
derivative f 0(x), can you find the function f (x)? This reverse process is called
antidi�erentiation or integration.

f (x) f 0(x)
antidifferentiation

integration

With this goal in mind, we state the chapter’s main definition.

Definition 38.1
A function F(x) is an antiderivative of f (x) if Dx

h
F(x)

i
= f (x).

F(x) f (x)
differentiate

antiderivative of f (x) derivative of F(x)

For example, let’s find an antiderivative of the function f (x) = 2x. We
ask: what function could we di�erentiate that would produce a derivative
of 2x?

? 2x
differentiate

In essence we are asking Dx
£
?
§
= 2x. Because Dx

£
x2§

= 2x, the function x2 is
an antiderivative of 2x.



431

Actually, there are lots of functions whose derivatives are 2x:

Dx
£
x2§

= 2x

Dx
£
x2 +1

§
= 2x

Dx
£
x2 °2

§
= 2x

Dx
£
x2 +º

§
= 2x

In general, if C is any constant whatsoever,

Dx
£
x2 +C

§
= 2x.

Thus the function f (x)= 2x has infinitely many antiderivatives F(x)= x2 +C.
Their graphs are the graph of y= x2 raised (or lowed) by C units.

F(x)= x2+C

Figure 38.1. The antiderivatives of the function f (x)= 2x.

Likewise, a little reverse engineering tells us that the antiderivatives of
the function f (x)= 3x2 are the functions F(x)= x3+C (where C is a constant)
because Dx

£
x2 +C

§
= 3x2. Their graphs are indicated below.

F(x)= x3+C

Figure 38.2. The antiderivatives of the function f (x)= 3x2.
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So if f (x) is a function that has an antiderivative F(x), then f (x) has not
one but infinitely many antiderivatives F(x)+C, where C is any constant.
There is a special name and notation for these antiderivatives.

Definition 38.2 Suppose f is a continuous function on an interval.
The set of all antiderivatives of f is called the indefinite integral of f .
This set of functions is denoted by

Z
f (x) dx.

Thus
R

f (x)dx stands for the set of all functions whose derivative is f (x).
We typically write

R
f (x)dx = F(x)+C where C denotes a constant and

Dx
£
F(x)+C

§
= f (x). We read

R
f (x)dx as “the indefinite integral of f (x) dx”

or just “the integral of f (x) dx”.

Example:
Z

2x dx = x2 +C, where C is a constant.

Example:
Z

3x2 dx = x3 +C, where C is a constant.

Given
R

f (x)dx, the process of finding F(x)+C is called integration.
In the examples above we found F(x)+C simply from our experience with
di�erentiation, but we will shortly develop a set of integration formulas.

In the expression
R

f (x)dx, the symbol
R

is called the integral sign and
the function f (x) (the function being integrated) is called the integrand.
The dx is called a di�erential. We will have more to say about di�erentials
in Chapter 39, but for now it’s best to think of the dx as punctuation, like a
closing parenthesis.

Remember that
Z

f (x) dx = F(x)+C means that Dx

h
F(x)+C

i
= f (x). This

is so important that we will display it in a box and revisit it many times.

Z
f (x)dx = F(x)+C () Dx

h
F(x)+C

i
= f (x)

Example:
Z

x3 dx = 1
4

x4 +C because Dx

∑
1
4

x4 +C
∏
= x3.

Example:
Z 2x

1+ x2 dx = ln
°
1+ x2¢

+C because Dx

h
ln

°
1+x2¢

+C
i
= 2x

1+x2 .

Example:
Z 1

1+ x2 dx = tan°1(x)+C because Dx

h
tan°1(x)+C

i
= 1

1+ x2 .
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These examples were somewhat ad hoc. But they underscore the fact
that we need a systematic set of rules for finding indefinite integrals. We
will begin that task now. Fortunately the task is relatively easy, because
for every derivative rule we get a corresponding integral rule by “running
the derivative rule in reverse.” We will start with the power rule.

For powers n 6=°1 we get an immediate rule for
R

xn dx as follows.
Z

xn dx = 1
n+1

xn+1+C because Dx

∑
1

n+1
xn+1+C

∏
= 1

n+1
(n+1)xn = xn.

This is called the power rule for integration.

Power Rule for Integration:
Z

xn dx = 1
n+1

xn+1 +C (provided n 6=°1)

Example:
Z

x3 dx = 1
3+1

x3+1 +C = 1
4

x4 +C

Example:
Z

x8 dx = 1
8+1

x8+1 +C = 1
9

x9 +C

Example:
Zp

x dx =
Z

x1/2 dx = 1
1/2+1

x1/2+1 +C = 2
3

x3/2 +C = 3
2
p

x3 +C

Example:
Z 1

x3 dx =
Z

x°3 dx = 1
°3+1

x°3+1 +C = °1
2

x°2 +C = 1
2x2 +C

The power rule for integration breaks down for n =°1 because it would
read

R
x°1dx = 1

°1+1 x°1+1 +C, and this involves division by zero.
So is there a formula for

R
x°1dx? That is, is there a formula for

R 1
x dx?

The answer would have to be a function F(x)+C whose derivative is 1
x . We

don’t have to look far: Because Dx
£
ln |x|+C

§
= 1

x , we have our next rule.

Power Rule for n=°1:
Z 1

x
dx = ln |x|+C

What other easy integration rules are within reach? If c is a constant
(possibly di�erent from C), then Dx

£
cx+C

§
= c. This yields another rule.

Constant Rule for Integration:
Z

c dx = cx+C

Example:
Z

5dx = 5x+C

Example:
Zp

2dx =
p

2x+C
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Any derivative rule Dx
£
F(x)

§
= f (x) yields an integration rule

R
f (x)dx =

F(x)+C. For example, from Dx
£
sin(x)

§
= cos(x) we get

R
cos(x)dx = sin(x)+C.

From Dx
£
cos(x)

§
=°sin(x) we get

R
sin(x)dx =°cos(x)+C.

Here is a list, beginning with the three formulas from the previous page.
Each rule below has the form

R
f (x)dx = F(x)+C. Check that each rule is

correct by verifying Dx
£
F(x)+C

§
= f (x).

Integration Rules
R

c dx = cx+C

R
xn dx = = 1

n+1
xn+1 +C (if n 6=°1)

R
x°1 dx = ln |x|+C

R
ex dx = ex +C

R
bx dx = 1

ln(b)
bx +C

R
sin(x)dx = °cos(x)+C

R
cos(x)dx = sin(x)+C

R
sec2(x)dx = tan(x)+C

R
csc2(x)dx = °cot(x)+C

R
sec(x)tan(x)dx = sec(x)+C

R
csc(x)cot(x)dx = °csc(x)+CZ 1
p

1° x2
dx = sin°1(x)+C

Z 1
1 + x2 dx = tan°1(x)+C

Z 1

x
p

x2 °1
dx = sec°1 |x|+C

These integration rules, or “backwards derivative rules” are easy to
internalize and memorize because of our experience with derivative rules.

But notice that there are certain glaring omissions. For instance, there
is no formula for

R
tan(x)dx because we don’t have a derivative rule of form

Dx

h
F(x)

i
= tan(x). Formulas for

R
tan(x)dx,

R
cot(x)dx,

R
sec(x)dx,

R
ln(x)dx,

etc., will have to wait until Calculus II.
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Never forget that
R

f (x)dx = F(x)+C means Dx
£
F(x)+C

§
= f (x). So if you

integrate f (x), then di�erentiate the result, you get f (x) back. In symbols,

Dx

∑Z
f (x)dx

∏
= f (x).

One consequence of this is another integration rule.

Constant Multiple Rule for Integration: If c is a constant, thenZ
c f (x)dx = c

Z
f (x)dx.

To check that this is correct, we can di�erentiate the right-hand side and
see if we get the integrand c f (x) from in the integral on the left. Doing so,

Dx

∑
c
Z

f (x)dx
∏

= c Dx

∑Z
f (x)dx

∏
= c f (x).

Since we got c f (x), the formula is correct.
The constant multiple rule combines with the other integration formulas:

Example:
Z

7x3dx = 7
Z

x3dx = 7
1

3+1
x3+1 +C = 7

4
x4 +C

Example:
Z
º

x
dx = º

Z1
x

dx = º ln |x|+C

Another integration rule comes from reversing the sum-di�erence rule
for derivatives. Check it by di�erentiating the right side to get f (x)±g(x):

Sum-Di�erence Rule for Integration:Z°
f (x)± g(x)

¢
dx =

Z
f (x)dx ±

Z
g(x)dx.

A great many indefinite integrals can be found by combining the rules
on this page with those on previous page. For example:

Z°
5x2 +2x

¢
dx =

Z
5x2 dx+

Z
2x dx (sum-di�erence rule)

= 5
Z

x2 dx+2
Z

x1 dx (const. mult. rule, twice)

= 5
1
3

x3 +2
1
2

x2 +C (power rule, twice)

= 5
3

x3 + x2 +C

In the third step we just added a C to the end, rather than getting two
constants (one from each integral) and adding them.
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We did this example in four steps, but after some practice you’ll work
problems like this in one step.

Example:
Z°
ºcos(x)°3sec2(x)°3x2+4

¢
dx = ºsin(x)°3tan(x)° x3 +4x+C.

Always remember that you can check your answer to an integration problem
by di�erentiating your answer and seeing if that produces the integrand. In
this example, Dx

£
ºsin(x)°3tan(x)° x3 +4x+C

§
= ºcos(x)°3sec2(x)°3x2 +4.

That is the integrand, so we know we integrated correctly.
Work enough exercises that you can do such problems readily.
Our examples here and the exercises below use the variable x exclusively.

But any variable can be used.

Example:
Z°

u+3eu¢
du = 1

2
u2 +3eu +C. Don’t forget that the di�erential

du must match the variable u (use du here, and not dx).
The next example illustrates that occasionally some algebraic manipu-

lation is needed to bring a problem to a form that matches a rule.

Example: Find
Z°

w2 °3w
¢
(w+1)dw.

This does not match any integration rules, but we can put it into a manage-
able form by multiplying the binomials before integrating.

Z°
w2 °3w

¢
(w+1)dw =

Z°
w3 °2w2 °3w

¢
dw = w4

4
° 2w3

3
° 3w2

2
+C

There is no product rule for integration, that is, no rule for
Z

f (x)g(x)dx.
Reversing the product rule for derivatives would yield

Z°
f 0(x)g(x)+ f (x)g0(x)

¢
dx = f (x)g(x)+C.

This is not very useful, as few functions match the form f 0(x)g(x)+ f (x)g0(x).
But in Chapter ?? we will see that reversing the chain rule is very useful.

In conclusion, we have begun exploring integration, the opposite process
of di�erentiation. This theme will occupy us for the remainder of the course.

F(x)+Cf (x)F(x)+C differentiation
integration

Dx

R
dx
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Exercises for Chapter 38
Find the indicated indefinite integrals.

1.
Z°

5x+3+ x4¢
dx 2.

Z°
x5 + x+1

¢
dx

3.
Z°

4x5 + x+2
¢

dx 4.
Z°

x3 +3x+5
¢

dx

5.
Z°

5x2 +2+sin(x)
¢

dx 6.
Z°

2ex + x4 +sec(x)tan(x)
¢

dx

7.
Z°

7+ x6 +sec2(x)
¢

dx 8.
Z°

3x2 +sin(x)+3
¢

dx

9.
Z°

ex + e+csc2(x)
¢

dx 10.
Z

5x°1 dx

11.
Z

3sec(x)tan(x) dx 12.
Z°

4x3 +cos(x)+1
¢
dx

13.
Z° 3px+cos(x)

¢
dx 14.

Z
5px3 dx

15.
Z°

ex + x4 +3
¢

dx 16.
Z°

sec2(x)+3sin(x)
¢

dx

17.
Z°

x3 +2x+ ex¢ dx 18.
Z

6
p

x dx

19.
Zµ

4x+ 1
x
+sin(x)

∂
dx 20.

Zµ
1
x3 +

p
x
∂

dx

21.
Z 5

1+ x2 dx 22.
Zµ

1
x
+cos(x)

∂
dx

23.
Z 2

x
p

x2 °1
dx 24.

Zµp
x+ 1

p
x

∂
dx

25.
Z

º
p

1° x2
dx 26.

Zµ
3px+ 1

x4

∂
dx

27.
Z

º

3+3x2 dx 28.
Z

x+ 1
p

1° x2
dx

29.
Z 1

p
x5 dx 30.

Zµ
x2 + 1

x2 + e
∂

dx

31.
Z e2x + ex

ex dx 32.
Zµ

x4 + 1
x
+
p

2
∂

dx

33.
Z 1

x2 dx 34.
Z x2 +1

2x
dx

35.
Z x3 °3x2 +1

x2 dx 36.
Z°

x2 +1
¢
(2x+1) dx

37. Is the equation
Z

xcos(x)dx = xsin(x)+cos(x)+C true or false?

38. Is the equation
Zµ

cos(x)
1
x
°sin(x) ln(x)

∂
dx = cos(x) ln(x)+C true or false?

39. Is the equation
Z sin(1/x)

x2 dx = cos
µ

1
x

∂
+C true or false?

40. Is the equation
Z

xcos(x)dx = x2

2
sin(x)+C true or false?

41. If f (x) and g(x) are di�erentiable functions, find
Z°

f 0(x)g(x)+ f (x)g0(x)
¢
dx.
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42. If f (x) and g(x) are di�erentiable functions, find
Z

f 0
°
g(x)

¢
g0(x) dx.

43. If f (x) and g(x) are di�erentiable functions, find
Z f 0(x)g(x)° f (x)g0(x)

(g(x))2
dx.

Exercise Solutions for Chapter 38

1.
Z°

5x+3+ x4¢
dx = 5x2

2
+3x+ x5

5
+C

3.
Z°

4x5 + x+2
¢

dx = 2x6

3
+ x2

2
+2x+C

5.
Z°

5x2 +2+sin(x)
¢

dx = 5x3

3
+2x°cos(x)+C

7.
Z°

7+ x6 +sec2(x)
¢

dx = 7x+ x7

7
+ tan(x)+C

9.
Z°

ex + e+csc2(x)
¢

dx = ex + ex°cot(x)+C

11.
Z

3sec(x)tan(x) dx = 3sec(x)+C

13.
Z° 3px+cos(x)

¢
dx =

Z≥
x1/3 +cos(x)

¥
dx = 1

1/3+1
x1/3+1 +sin(x)+C = 1

4/3
x4/3 +sin(x)+C

= 3
4

3px4 +sin(x)+C

15.
Z°

ex + x4 +3
¢

dx = ex + x5

5
+3x+C

17.
Z°

x3 +2x+ ex¢ dx = x4

4
+ x2 + ex +C

19.
Zµ

4x+ 1
x
+sin(x)

∂
dx = 2x2 + ln |x|°cos(x)+C

21.
Z 5

1+ x2 dx = 5
Z 1

1+ x2 = 5tan°1(x)+C

23.
Z 2

x
p

x2 °1
dx = 2

Z 1

x
p

x2 °1
dx = 2sec°1 |x|+C

25.
Z

º
p

1° x2
dx =º

Z 1
p

1° x2
dx =ºsin°1(x)+C

27.
Z

º

3+3x2 dx = º

3

Z 1
1+ x2 dx = º

3
tan°1(x)+C

29.
Z 1

p
x5 dx =

Z
x°5/2dx = 1

°5/2+1
x°5/2+1 +C = 1

°3/2
x°3/2 +C =° 2

3
p

x3 +C

31.
Z e2x + ex

ex dx =
Z e2x

ex + ex

ex dx
Z°

ex +1
¢

dx = ex + x+C
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33.
Z 1

x2 dx =
Z

x°2dx = 1
°2+1

x°2+1 +C =°x°1 +C =°1
x
+C

35.
Z x3 °3x2 +1

x2 dx =
Z°

x°3+ x°2¢
dx = x2

2
°3x° 1

x
+C

37. Is the equation
Z

xcos(x)dx = xsin(x)+cos(x)+C true or false?

Since Dx

h
xsin(x)+cos(x)+C

i
= sin(x)+ xcos(x)°sin(x)= xcos(x), this is true.

39. Is the equation
Z sin

° 1
x
¢

x2 dx = cos
µ

1
x

∂
+C true or false?

Since Dx

∑
cos

µ
1
x

∂
+C

∏
=°sin

µ
1
x

∂µ
° 1

x2

∂
=

sin
° 1

x
¢

x2 equals the integrand, this is true.

41.
Z°

f 0(x)g(x)+ f (x)g0(x)
¢
dx = f (x)g(x)+C because Dx

h
f (x)g(x)+C

i
= f 0(x)g(x)+ f (x)g0(x).

43.
Z f 0(x)g(x)° f (x)g0(x)

(g(x))2
dx = f (x)

g(x)
+C because Dx

∑
f (x)
g(x)

+C
∏
= f 0(x)g(x)° f (x)g0(x)

(g(x))2
.


