1. A variable force moves an object from 0 to 5 on the number line (units in meters). At any point x between 0 and 5, the force is $\frac{2x}{x^2+1}$ Newtons. Find the work done in moving the object from 0 to 5.

$$W = \int_{-\infty}^{5} \frac{2x}{x^2 + 1} dx$$

$$= \int_{0}^{5^{2}+1} \frac{1}{u} du$$

$$= \int_{0}^{2} \frac{1}{u} du$$

$$= \left[\left[\ln \left| u \right| \right] \right]_{1}^{26}$$

Y. chard

1. A variable force moves an object from $\ln(\pi/4)$ to $\ln(\pi/2)$ on the number line (units in meters). At any point x between $\ln(\pi/4)$ and $\ln(\pi/2)$, the force is $e^x \cos(e^x)$ Newtons. Find the work done in moving the object from $\ln(\pi/4)$ to $\ln(\pi/2)$.

 $W = \int_{0}^{1} e^{x} \cos(e^{x}) dx$ $\ln \frac{\pi}{4}$

 $Eu = e^{x}dx$ $Eu = e^{x}dx$

 $= \int_{e^{\ln \frac{\pi}{2}}}^{e^{\ln \frac{\pi}{2}}} \cos(u) du$ $= \int_{e^{\ln \frac{\pi}{4}}}^{e^{\ln \frac{\pi}{4}}} \cos(u) du$

 $=\int_{-\pi}^{\pi}\cos(u)\,du=\left[\sin(u)\right]_{\frac{\pi}{4}}^{2}$

 $= \sin \frac{\pi}{2} - \sin \frac{\pi}{4}$