Algebra Solutions by Richard Chapter 16: Polynomials

3. (d)

												$6x^2$	+	6x				
		x^2	+	x	_	2		$\begin{array}{c} 6x^4 \\ 6x^4 \end{array}$	- +	$2x^3 \\ 6x^3$	+	$\frac{x^2}{5x^2}$	_	3x	+	1		
										$ \begin{array}{c} 6x^3\\ 6x^3 \end{array} $	++	$ \begin{array}{c} 6x^2\\ 6x^2 \end{array} $	_	3x 2x				
													_	5x	+	1		
Answer:	In the rin	g \mathbb{Z}_7	we	hav	ve 63	r^4 -	- 23	$x^3 + x^3$	$c^{2} -$	3x +	1 =	$(x^2 +$	- x -	- 2)($6x^2$	+6x) -	-2x +	- 1.

- 5. Find all zeros of the following polynomials in the stated ring.
 - (b) $3x^3 4x^2 x + 4$ in \mathbb{Z}_5 . Since -4 = 1 and -1 = 4 for this ring, we can simplify the polynomial as $3x^3 + x^2 + 4x + 4$. The ring \mathbb{Z}_5 is small enough that we can just plug in its five elements individually and see what we get.

 $\begin{array}{ll} \text{Try } x = 0; & 3 \cdot 0^3 + 0^2 + 4 \cdot 0 + 4 = 4 \neq 0. \\ \text{Try } x = 1; & 3 \cdot 1^3 + 1^2 + 4 \cdot 1 + 4 = 12 \neq 0. \\ \text{Try } x = 2; & 3 \cdot 2^3 + 2^2 + 4 \cdot 2 + 4 = 40 = 0. \\ \text{Try } x = 3; & 3 \cdot 3^3 + 3^2 + 4 \cdot 3 + 4 = 106 \neq 0. \\ \text{Try } x = 4; & 3 \cdot 4^3 + 4^2 + 4 \cdot 4 + 4 = 228 \neq 0. \\ \hline \text{Thus } x = 2 \text{ is the only zero of this polynomial.} \end{array}$

(d) $3x^3 + x + 1$ in \mathbb{Z}_2 .

Whether you evaluate the polynomial for x = 0 or x = 1, the answer is 1. Therefore this polynomial has no zeros over the given field.

9 Find all irreducible polynomials of degree 2 and 3 in $\mathbb{Z}_2[x]$.

Reason as follows: An irreducible polynomial f must have constant term 1, for otherwise f(0) = 0and f has a factor of (x - 0). Also, if f is irreducible over $\mathbb{Z}_2[x]$, it must have an odd number of (non-zero) terms, otherwise f(1) = 0, and f has a factor of (x - 1). This reasoning leaves the following polynomials.

 $x^{2} + x + 1$ $x^{3} + x^{2} + 1$ $x^{3} + x + 1$

23 Show that $x^p - x$ has p distinct zeros in \mathbb{Z}_p , for any prime p.

Proof. Recall that \mathbb{Z}_p is a field for any prime p. Thus each one of its p-1 non-zero elements is a unit. Then $U(p) = \{1, 2, 3, \ldots, p-1\}$ is a group with p-1 elements. By Lagrange's Theorem, we have $x^{p-1} = 1$ for each $x \in U(p)$. In other words, $x^{p-1} - 1 = 0$ for each non-zero element of \mathbb{Z}_p . But then $x(x^{p-1}-1) = 0$ for all elements of \mathbb{Z}_p , including 0. (Because the first factor x is zero when x = 0, the second factor $x^{p-1} - 1$ is zero for all other values of x.) In other words, $x^p - x = 0$ for all p elements of \mathbb{Z}_p , which is just another way of saying that $x^p - x$ has p distinct zeros.

As $x^p - x$ has zeros $0, 1, 2, \dots, p-1$, it follows that $x^p - x = (x-0)(x-1)(x-2)(x-3)\cdots(x-(p-1))$.