Algebra Solutions by Richard

Chapter 10: Homomorphisms and Factor Groups

5.

Are the following homomorphisms? If so, state their kernels.

(b) ¢ :R — GL2(R), defined by ¢(a) = < (11 (1) >

Observe that ¢(a + b) = < a—ll—b (1) > = ( Cll (1) ) ( 11) (1) ) = p(a)p(b). In other words,

we’ve shown p(a + b) = p(a)p(b), so YES, ¢ is a homomorphism.
The kernel is {ZL‘ ER:p(x) = ( (1) (1) )} = | {0}.

(d) ¢ :GL2(R) — R*, defined by ¢ << CCL Z >) = ad — bc.

Notice that this is just ¢(A) = det(A). We know from linear algebra that det(AB) = det(A) det(B),
so p(AB) = det(AB) = det(A)det(B) = ¢(A)p(B). In summary we’ve shown ¢(AB) =
©(A)p(B), so ¢ is indeed a homomorphism.

The kernel is the set of all matrices with determinant 1, that is,

the kernel is SLy(R). |

(e) ¢: M(R) — R, defined by gp(( ‘CL 2 )) = b.
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© (< (Z, 2, >) In other words, we have ¢(A+ B) = p(A) + ¢(B), so ¢ is indeed a homomor-

phism.

Its kernel is | ker(y) = {( Z 2 > ta,c,d e R}.

Describe all of the homomorphisms from Zo4 to Zg.

In class we talked about how if a cyclic group G = (a) has generator a, then any homomorphism
f: G — H is completely determined by the element f(a) = b € H, since for any element a* € G
we have f(a*) = f(a)® = b*. In particular this means that if homomorphisms f,g : G — H satisfy
f(a) = g(a) (that is, if they agree on the generator a), then f = g.

In the setting of the current problem, the element a = 1 generates Zo4, and we cannot have any more
than 18 homomorphisms f : Zoy — Zis, because there are potentially 18 different values for f(1).

However, for some of these 18 choices of b € Z1g, there may not be a homomorphism f with f(1) = b.
The following lemma will help us out here.

Lemma. Suppose G = (a) is a finite cyclic group generated by a, and let H be an arbitrary group.
Then there is a homomorphism f : G — H with f(a) = b € H if and only if the order of b (in H)
divides |G|.

Proof. (=) Suppose that G and H are as stated and f : G — H is a homomorphism. Set b = f(a).
Notice that

(b) = (b : k€ Z) = {f(a)" : k € Z} = {f(a") : k € Z} = [({a)) = F(CD).

Therefore the map f : G — (b) is simply f : G — f(G), and this is a surjective homomorphism.
Consequently, the First Homomorphism Theorem gives G/ker(f) = (b). Then |G/ker(f)| = [(b)],

which means “{LriGJf)‘ = [(b)|, or rather |G| = |(b)| - | ker(f)|. Therefore the order of b divides |G]|.
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(<) Suppose the order of b divides |G|. We will construct a homomorphism f : G — H satisfying
f(a) = b. First we show that the function f : G — H defined as f(a*) = b* for each k € Z is
well-defined. For this we must show that if a* = af, then f(a¥) = f(a%). Thus suppose a* = a’.
Then a*~* = eg, so k — ¢ is a multiple of |{a)| = |G|, that is k — £ = m|G| for some integer G. But
also the order of b divides |G|, so bl¢l = ey, This means v*o~¢ = F=¢ = p7ICl = (BIGh™ = el = ey.
From b¥b=¢ = epy, we get b* = b, that is f(a*) = f(a’). Therefore f is well-defined.

Finally, f is a homomorphism because for any x,y € G we have x = o' and y = o™ for some integers
m and n, and therefore f(zy) = f(a™a™) = f(a™) = ™" =0"b" = f(a™)f(a™) = f(z)f(y). [ |

Now we can apply the lemma to solve the problem. The lemma says that whenever G = (a) and
b € H is such that its order divides |G|, the map f(a*) = b* is a homomorphism f : G — K.
Moreover any homomorphism ¢ : G — H must have this form.

In the current situation we have G = Zys = (1), and the above paragraph implies every homomor-
phism f : Zoy — Zig has form f(k-1) = k-b, where b € Z1g has an order that divides |G| = 24. Thus
the number of homomorphisms from Zsy to Z1g equals the number of elements in Zg whose order
divides 24.

Recall the following homework problem from several weeks back: It lists the order of every element

of Z1g: The table is made with the aid of Theorem 4.6. Since a = 1 is a generator of Zig the theorem

asserts that any b=k-a=k-1=k € Zys has order m

element be Z1g |0 1 (23|45 |67 8910111213 |14|15]16]|17
order of b 1118(9(6(9|18(3|18(9|2|9 |18 3 |18 9| 6|9 |18

There are six elements of Z;g whose orders divide 24. They are 0,3,6,9,12 and 15.
Thus ’There are six homomorphisms from Zs4 to Zqg. ‘

(c)Recall that the center of a group is the set Z(G) = {x € G : zg = gx for all g € G }. Show that
this is a normal subgroup of G.

Proof. Take an arbitrary element g € G. We have to showgZ(G) = Z(G)g. This can be done simply
as follows: we use the fact that xg = gz for any x € Z(G).

9Z(G) = {gzx:x€ Z(G)} (by definition of the left coset ¢Z(G))
= {zg:z € Z(G)} (because = € Z(Q))
= Z(G)g (by definition of the right coset Z(G)g)
This completes the proof. |

Suppose ¢ : G — H is a group homomorphism. Prove ¢ is injective if and only if o=t (ey) = {eq}.

Proof. Notice that ker(¢) = {z € G : p(x) = ey} = ¢ '(en), so we are being asked to prove that
¢ is injective if and only if ker(¢) = {eg}.

(=) Suppose ¢ is injective. We know that p(eq) = epr, as this is a standard property of homomor-
phisms. But since ¢ is injective, for any = # eq, we must have p(z) # ¢(eq), or p(z) # er. Thus
eq € G is the only element of G that ¢ sends to ey € H. This means ker(p) = {eg}.

(<) Suppose ker(p) = {eq}. To show ¢ is injective, we must show ¢(z) = ¢(y) implies z = y. Thus
suppose ¢(z) = ¢(y). Now left-multiply both sides of this equation by ¢(y~1). We get

ey o) = oy Hey),

1 1

z) = p(y~ly), which is p(y'2) = p(eq), or p(y~'x) = ey. This means
!z = eq, which yields = y. Therefore ¢ is injective.

and this becomes p(y~
y 1z € ker(p) = {eg}, so y~



