
Algebra Solutions by Richard

Chapter 10: Homomorphisms and Factor Groups

5. Are the following homomorphisms? If so, state their kernels.

(b) ϕ : R→ GL2(R), defined by ϕ(a) =
(

1 0
a 1

)
.

Observe that ϕ(a + b) =
(

1 0
a + b 1

)
=

(
1 0
a 1

) (
1 0
b 1

)
= ϕ(a)ϕ(b). In other words,

we’ve shown ϕ(a + b) = ϕ(a)ϕ(b), so YES, ϕ is a homomorphism.

The kernel is
{

x ∈ R : ϕ(x) =
(

1 0
0 1

)}
= {0}.

(d) ϕ : GL2(R)→ R∗, defined by ϕ

((
a b
c d

))
= ad− bc.

Notice that this is just ϕ(A) = det(A). We know from linear algebra that det(AB) = det(A) det(B),
so ϕ(AB) = det(AB) = det(A) det(B) = ϕ(A)ϕ(B). In summary we’ve shown ϕ(AB) =
ϕ(A)ϕ(B), so ϕ is indeed a homomorphism.

The kernel is the set of all matrices with determinant 1, that is, the kernel is SL2(R).

(e) ϕ : M2(R)→ R, defined by ϕ

((
a b
c d

))
= b.

Notice that ϕ

((
a b
c d

)
+

(
a′ b′

c′ d′

))
= ϕ

((
a + a′ b + b′

c + c′ d + d′

))
= b+b′ = ϕ

((
a b
c d

))
+

ϕ

((
a′ b′

c′ d′

))
. In other words, we have ϕ(A + B) = ϕ(A) + ϕ(B), so ϕ is indeed a homomor-

phism.

Its kernel is ker(ϕ) =
{(

a 0
c d

)
: a, c, d ∈ R

}
.

9. Describe all of the homomorphisms from Z24 to Z18.

In class we talked about how if a cyclic group G = 〈a〉 has generator a, then any homomorphism
f : G → H is completely determined by the element f(a) = b ∈ H, since for any element ak ∈ G
we have f(ak) = f(a)k = bk. In particular this means that if homomorphisms f, g : G → H satisfy
f(a) = g(a) (that is, if they agree on the generator a), then f = g.

In the setting of the current problem, the element a = 1 generates Z24, and we cannot have any more
than 18 homomorphisms f : Z24 → Z18, because there are potentially 18 different values for f(1).

However, for some of these 18 choices of b ∈ Z18, there may not be a homomorphism f with f(1) = b.
The following lemma will help us out here.

Lemma. Suppose G = 〈a〉 is a finite cyclic group generated by a, and let H be an arbitrary group.
Then there is a homomorphism f : G → H with f(a) = b ∈ H if and only if the order of b (in H)
divides |G|.
Proof. (⇒) Suppose that G and H are as stated and f : G→ H is a homomorphism. Set b = f(a).
Notice that

〈b〉 = {bk : k ∈ Z} = {f(a)k : k ∈ Z} = {f(ak) : k ∈ Z} = f(〈a〉) = f(G).

Therefore the map f : G → 〈b〉 is simply f : G → f(G), and this is a surjective homomorphism.
Consequently, the First Homomorphism Theorem gives G/ ker(f) ∼= 〈b〉. Then |G/ ker(f)| = |〈b〉|,
which means |G|

| ker(f)| = |〈b〉|, or rather |G| = |〈b〉| · | ker(f)|. Therefore the order of b divides |G|.
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(⇐) Suppose the order of b divides |G|. We will construct a homomorphism f : G → H satisfying
f(a) = b. First we show that the function f : G → H defined as f(ak) = bk for each k ∈ Z is
well-defined. For this we must show that if ak = a`, then f(ak) = f(a`). Thus suppose ak = a`.
Then ak−` = eG, so k − ` is a multiple of |〈a〉| = |G|, that is k − ` = m|G| for some integer G. But
also the order of b divides |G|, so b|G| = eH . This means bkb−` = bk−` = bm|G| = (b|G|)m = em

H = eH .
From bkb−` = eH , we get bk = b`, that is f(ak) = f(a`). Therefore f is well-defined.

Finally, f is a homomorphism because for any x, y ∈ G we have x = am and y = an for some integers
m and n, and therefore f(xy) = f(aman) = f(amn) = bmn = bmbn = f(am)f(an) = f(x)f(y).

Now we can apply the lemma to solve the problem. The lemma says that whenever G = 〈a〉 and
b ∈ H is such that its order divides |G|, the map f(ak) = bk is a homomorphism f : G → K.
Moreover any homomorphism g : G→ H must have this form.

In the current situation we have G = Z24 = 〈1〉, and the above paragraph implies every homomor-
phism f : Z24 → Z18 has form f(k ·1) = k · b, where b ∈ Z18 has an order that divides |G| = 24. Thus
the number of homomorphisms from Z24 to Z18 equals the number of elements in Z18 whose order
divides 24.

Recall the following homework problem from several weeks back: It lists the order of every element
of Z18: The table is made with the aid of Theorem 4.6. Since a = 1 is a generator of Z18 the theorem
asserts that any b = k · a = k · 1 = k ∈ Z18 has order 18

gcd(k,18)
.

element b ∈ Z18 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
order of b 1 18 9 6 9 18 3 18 9 2 9 18 3 18 9 6 9 18

There are six elements of Z18 whose orders divide 24. They are 0,3,6,9,12 and 15.
Thus There are six homomorphisms from Z24 to Z18.

26. (c)Recall that the center of a group is the set Z(G) = {x ∈ G : xg = gx for all g ∈ G }. Show that
this is a normal subgroup of G.

Proof. Take an arbitrary element g ∈ G. We have to showgZ(G) = Z(G)g. This can be done simply
as follows: we use the fact that xg = gx for any x ∈ Z(G).

gZ(G) = {gx : x ∈ Z(G)} (by definition of the left coset gZ(G))
= {xg : x ∈ Z(G)} (because x ∈ Z(G))
= Z(G)g (by definition of the right coset Z(G)g)

This completes the proof.

32. Suppose ϕ : G→ H is a group homomorphism. Prove ϕ is injective if and only if ϕ−1(eH) = {eG}.
Proof. Notice that ker(ϕ) = {x ∈ G : ϕ(x) = eH} = ϕ−1(eH), so we are being asked to prove that
ϕ is injective if and only if ker(ϕ) = {eG}.
(⇒) Suppose ϕ is injective. We know that ϕ(eG) = eH , as this is a standard property of homomor-
phisms. But since ϕ is injective, for any x 6= eG, we must have ϕ(x) 6= ϕ(eG), or ϕ(x) 6= eH . Thus
eG ∈ G is the only element of G that ϕ sends to eH ∈ H. This means ker(ϕ) = {eG}.
(⇐) Suppose ker(ϕ) = {eG}. To show ϕ is injective, we must show ϕ(x) = ϕ(y) implies x = y. Thus
suppose ϕ(x) = ϕ(y). Now left-multiply both sides of this equation by ϕ(y−1). We get

ϕ(y−1)ϕ(x) = ϕ(y−1)ϕ(y),

and this becomes ϕ(y−1x) = ϕ(y−1y), which is ϕ(y−1x) = ϕ(eG), or ϕ(y−1x) = eH . This means
y−1x ∈ ker(ϕ) = {eG}, so y−1x = eG, which yields x = y. Therefore ϕ is injective.
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