Algebra Solutions by Richard

Chapter 12: Structure of Groups

2. List all abelian groups of order 200, up to isomorphism. (That is, no two groups on your list should be isomorphic; and for any abelian group of order 200, your list must contain it or a group isomorphic to it.)

Solution: $200 = 2^3 \cdot 5^2$. Thus according to the structure theorem of finite abelian groups, the possibilities are:

- (1) $\mathbb{Z}_8 \times \mathbb{Z}_{25}$
- (2) $\mathbb{Z}_8 \times \mathbb{Z}_2 \times \mathbb{Z}_5$
- (3) $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_{25}$
- (4) $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_5$
- (5) $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{25}$
- (6) $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_5$
- 6. If n divides the order of a finite abelian group G, then G has a subgroup of order n.

Proof First we will prove that this is true if $G = \mathbb{Z}_{p^a}$, where p is prime and a is a positive integer. Suppose n divides $|\mathbb{Z}_{p^a}| = p^a$. Then n must be one of the values $p^0, p^1, p^2, p^3, p^4, \ldots, p^a$. Just note the following:

Therefore, if *n* divides the order of \mathbb{Z}_{p^a} , where *p* is prime, then \mathbb{Z}_{p^a} has a subgroup of order *n*. In fact, the above reasoning shows that \mathbb{Z}_{p^a} has a (cyclic) subgroup $\langle p^{a-b} \rangle$ isomorphic to \mathbb{Z}_{p^b} for any $0 \leq b \leq a$.

Now let G be an arbitrary finite abelian group. By the Structure Theorem for Finite Abelian Groups,

$$G \cong \mathbb{Z}_{p_1^{a_1}} \times \mathbb{Z}_{p_2^{a_2}} \times \mathbb{Z}_{p_2^{a_2}} \times \dots \times \mathbb{Z}_{p_n^{a_n}},$$

where the p_i are prime numbers, and $|G| = p_1^{a_1} p_2^{a_2} p_3^{a_3} \cdots p_n^{a_n}$.

Now, if *n* divides $|G| = p_1^{a_1} p_2^{a_2} p_3^{a_3} \cdots p_n^{a_n}$, then by the Fundamental Theorem of Arithmetic we can write $n = p_1^{b_1} p_2^{b_2} p_3^{b_3} \cdots p_n^{b_n}$, for some $0 \le b_i \le a_i$ for each index *i*. By the first paragraph of the proof, we know that for each index *i* the group $\mathbb{Z}_{p_i^{a_i}}$ has a subgroup H_i of order $p_i^{b_i}$. Then

$$H_1 \times H_2 \times \dots \times H_n \subseteq \mathbb{Z}_{p_1^{a_1}} \times \mathbb{Z}_{p_2^{a_2}} \times \mathbb{Z}_{p_2^{a_2}} \times \dots \times \mathbb{Z}_{p_n^{a_n}} \cong G$$

is a subgroup of order $p_1^{b_1} p_2^{b_2} p_3^{b_3} \cdots p_n^{b_n} = n$.

Editorial Comment: In general, if a finite group G is **not** abelian, then there may be divisors n of |G| for which G has no subgroup of order n. Consider the non-abelian group A_4 , which has order 12. The integer n = 6 divides 12, but Corollary 6.10 states that no subgroup of A_4 has order 6.