Algebra Solutions by Richard

Chapter 3: Groups

2. Which of the following multiplication tables defines a group on the set $G = \{a, b, c, d\}$?

(a)	(b)	(c)	(d)
$\circ \mid a \mid b \mid c \mid d$	$\circ \mid a \mid b \mid c \mid d$	$\circ \mid a \mid b \mid c \mid d$	$\circ a b c d$
a a c d a	a a b c d	a a b c d	a a b c d
b b b c d	$b \mid b \mid a \mid d \mid c$	$b \mid b \mid c \mid d \mid a$	$b \mid b \mid a \mid c \mid d$
$c \mid c \mid d \mid a \mid b$	$c \mid c \mid d \mid a \mid b$	$c \mid c \mid d \mid a \mid b$	$c \mid c \mid b \mid a \mid d$
$d \mid d \mid a \mid b \mid c$	$d \mid d c b a$	$d \mid d \mid a \mid b \mid c$	$d \mid d \mid d \mid b \mid c$
This is not a group. The table shows that the equation $b \circ x = a$ has no solution. If this were a group, we would have a solution as follows:	This is a group! Just let $a = (0,0)$, b = (0,1), $c = (1,0)and d = (1,1), andthis is the table for\mathbb{Z}_2 \times \mathbb{Z}_2. (See Table3.5 in the text.)$	This is a group! Just let $a = 0, b = 1, c = 2$ and $d = 3$, and this is the table for \mathbb{Z}_4 .	This is not a group. If it were, the identity would have to be a , as we have $a \circ x = x$ for each $x \in G$. But then d has no in- verse for the table
$b \circ x = a$ $b^{-1} \circ (b \circ x) = b^{-1} \circ a$			shows $d \circ x \neq a$ for
$(b^{-1} \circ b) \circ x = b^{-1} \circ a$ $e \circ x = b^{-1} \circ a$			each $x \in G$.
$x = b^{-1} \circ a$			

7. Let $S = \mathbb{R} \setminus \{-1\}$ and define a binary operation on S as a * b = a + b + ab. Prove that (S, *) is an abelian group.

We should first check that * is really a valid binary operation on the set $S = \mathbb{R} \setminus \{-1\}$. Suppose $a, b \in S = \mathbb{R} \setminus \{-1\}$. Then a and b are real numbers, so certainly a * b = a + b + ab is a real number too. We just need to show that it is not equal to -1, that is, $a * b \in \mathbb{R} \setminus \{-1\}$. Suppose to the contrary that a * b = a + b + ab = -1. Now we have

$$a+b+ab = -1$$

$$a+b(1+a) = -1$$

$$b(1+a) = -1-a$$

$$b = \frac{-1-a}{1+a}$$

$$b = -1.$$

(division OK, since $a \neq -1$)
(division OK, since $a \neq -1$)

But b = -1 contradicts the fact that $b \in \mathbb{R} \setminus \{-1\}$. Therefore we conclude $a * b \neq -1$, so $a * b \in S = \mathbb{R} \setminus \{-1\}$. This shows that * is indeed a binary operation on S.

Next we are going to show that (S, *) satisfies the group axioms.

1. Note that * is associative, as follows.

$$(a * b) * c = (a + b + ab) * c$$

= $(a + b + ab) + c + (a + b + ab)c$
= $a + b + ab + cac + bc + abc$
= $a + (b + c + bd) + a(b + c + bc)$
= $a * (b + c + bc)$
= $a * (b + c)$

- 2. Notice that 0 is an identity because $a * 0 = a + 0 + a \cdot 0 = a$ and $0 * a = 0 + a + 0 \cdot a = a$ for each $a \in S$.
- 3. Notice that each element $a \in S$ has an inverse $a^{-1} = \frac{-a}{1+a}$ because

$$a * \frac{-a}{1+a} = a + \frac{-a}{1+a} + a \frac{-a}{1+a}$$
$$= \frac{a(1+a)}{1+a} + \frac{-a}{1+a} + \frac{-a^2}{1+a}$$
$$= 0.$$

(Recall that 0 is the identity.) Likewise we have $\frac{-a}{1+a} * a = 0$.

We've shown that (S, *) is associative, has an identity element, and each element has an inverse. Thus it is a group.

Note that a * b = a + b + ab = b + a + ba = b * a. Since a * b = b * a, the group is abelian...

10. Prove that the set of matrices of the form $\begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix}$ is a group under matrix multiplication.

Note that the product of two matrices of the given form has the same form (i.e. 1's on the diagonal and 0's below the diagonal):

$$\begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & x' & y' \\ 0 & 1 & z' \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x+x' & y+y'+xz' \\ 0 & 1 & z+z' \\ 0 & 0 & 1 \end{pmatrix}$$

It follows that matrix multiplication is a well-defined binary operation on the set of all matrices of the given form.

Let's check that this is a group

- 1. We know from linear algebra that matrix multiplication is associative, so the given binary operation is automatically associative.
- 2. If we let x = y = z = 0 then it is clear that the identity matrix I has the above form. Thus I is an identity element, as IA = AI for each matrix A.
- 3. Finally, note that each matrix of the above form is invertible, as its determinant is 1, so it is invertible. Moreover, we have

$$\left(\begin{array}{rrrr} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{array}\right)^{-1} = \left(\begin{array}{rrrr} 1 & -x & xz - y \\ 0 & 1 & -z \\ 0 & 0 & 1 \end{array}\right),$$

which is also of the given form.

Thus the set of all such matrices is a group, for matrix multiplication on it is associative, there is an identity, and there is an inverse of each matrix.

13. Show that $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ is a group under the operation of multiplication.

Given $a, b, c \in \mathbb{R}^*$, we have a(bc) = (ab)c because multiplication of real numbers is associative. Also, we have $1 \in \mathbb{R}^*$, and 1a = a1 = a, so \mathbb{R}^* has an identity e = 1. Finally, given any $a \in \mathbb{R}^* = \mathbb{R} \setminus \{0\}$, it follows that $a \neq 0$, so the element $a^{-1} = \frac{1}{a}$ is defined. As $aa^{-1} = a\frac{1}{a} = 1$ and $a^{-1}a = 1$, it follows that each element $a \in \mathbb{R}^*$ has an inverse a^{-1} . Thus \mathbb{R}^* is a group.

14. Given the groups \mathbb{R}^* and \mathbb{Z} , let $G = \mathbb{R}^* \times \mathbb{Z}$. Define a binary operation on this set as $(a, m) \circ (b, n) = (ab, m + n)$. Show that G is a group under this operation.

Let's verify each of the three group axioms.

1. Note that \circ is associative, as follows.

$$\begin{aligned} [(a,m) \circ (b,n)] \circ (c,k) &= (ab,m+n) \circ (c,k) \\ &= (abc,m+n+k) \\ &= (a,m) \circ (bc,n+k) \\ &= (a,m) \circ [(b,n) \circ (c,k)] \end{aligned}$$

- 2. Notice that (1,0) is an identity because $(a,m) \circ (1,0) = (a \cdot 1, m + 0) = (a,m)$ and $(1,0) \circ (a,m) = (1 \cdot a, 0 + m) = (a,m)$ for each $(a,m) \in G$.
- 3. Notice that each element $(a, m) \in G$ has an inverse $(\frac{1}{a}, -m)$ because $(a, m) \circ (\frac{1}{a}, -m) = (1, 0)$ and $(\frac{1}{a}, -m) \circ (a, m) = (1, 0)$. (Recall that (1, 0) is the identity.)

We've shown that (G, \circ) is associative, has an identity element (1, 0), and each element has an inverse. Thus it is a group.

21. For each $a \in \mathbb{Z}_n$, find a b for which $a + b \equiv b + a \equiv 0 \pmod{n}$.

Just let b = [n - a]. Then [a] + [b] = [a] + [n - a] = [a + n - a] = [n] = [0]. This means $a + b \equiv 0 \pmod{n}$.