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This is not a group.
The table shows
that the equation
box = a has no
solution. If this were
a group, we would
have a solution as
follows:
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This is a group!
Just let a = (0,0),
b=(0,1), c = (1,0)
and d = (1,1), and
this is the table for
Zao x L. (See Table
3.5 in the text.)

Chapter 3: Groups
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This is a group!
Just let a =0, b =
1, c=2and d = 3,
and this is the table
for Zy4.

2. Which of the following multiplication tables defines a group on the set G = {a,b,c,d}?

(d)

o‘a b ¢ d
ala b ¢ d
blb a ¢ d
cle b a d
dld d b ¢

This is mnot a
group. If it were,
the identity would
have to be a, as we
have a o x = x for
each x € G. But
then d has no in-

box = a verse, for the table
b lo(boz) = b loa shows d oz # a for
(b lob)ozx = b loa each z € G.
cox = b loa
z = bloa.

7. Let S =R\ {—1} and define a binary operation on S as a * b = a + b + ab. Prove that (S, ) is
an abelian group.

We should first check that = is really a valid binary operation on the set S =R\ {—1}. Suppose
a,b € S =R\ {-1}. Then a and b are real numbers, so certainly a * b = a + b + ab is a real
number too. We just need to show that it is not equal to —1, that is, axb € R\ {—1}. Suppose
to the contrary that a xb =a+ b+ ab = —1. Now we have

a+b+ab = -1
a+b(l+a) = -1
b(l+a) = —1—a
11—
b = T aa (division OK, since a # —1)
b = -1

But b = —1 contradicts the fact that b € R\ {—1}. Therefore we conclude a x b # —1, so
axbe S =R\ {-1}. This shows that  is indeed a binary operation on S.

Next we are going to show that (S, *) satisfies the group axioms.
1. Note that * is associative, as follows.

(axb)xc = (a+b+ab)xc
= (a+b+ab)+c+ (a+b+ab)c
= a+b+ab+ cac+ be+ abc
= a+(b+c+bd)+alb+c+be)
= ax(b+c+bc)

= ax(bxc)
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2. Notice that 0 is an identity because a*0 =a+0+a-0=aand 0xa=04+a+0-a = a for

each a € S.
3. Notice that each element a € S has an inverse a1 = ﬁ“a because
. —a n —a n —a
a = a a

1+a 1+a 1+a
a(l+a) —a —a?

= + +
14+a l1+a 1+4a

= 0.

(Recall that 0 is the identity.) Likewise we have 5% * a = 0.

We’ve shown that (S, *) is associative, has an identity element, and each element has an inverse.
Thus it is a group.

Note that axb=a+b+ab=b+a+ba =bx*a. Since a * b = b * a, the group is abelian..

1 =z
Prove that the set of matrices of the form | 0 1 is a group under matrix multiplication.

— N

Note that the product of two matrices of the given form has the same form (i.e. 1’s on the
diagonal and 0’s below the diagonal):

It follows that matrix multiplication is a well-defined binary operation on the set of all matrices
of the given form.

Let’s check that this is a group
1. We know from linear algebra that matrix multiplication is associative, so the given binary
operation is automatically associative.

2. If we let x = y = 2z = 0 then it is clear that the identity matrix I has the above form. Thus
I is an identity element, as IA = AI for each matrix A.

3. Finally, note that each matrix of the above form is invertible, as its determinant is 1, so it
is invertible. Moreover, we have

-1

1 =z vy 1 —z zz—y
01 =z =10 1 —z ,
0 0 1 0 0 1

which is also of the given form.

Thus the set of all such matrices is a group, for matrix multiplication on it is associative, there
is an identity, and there is an inverse of each matrix.
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Show that R* = R\ {0} is a group under the operation of multiplication.

Given a,b,c € R*, we have a(bc) = (ab)c because multiplication of real numbers is associative.
Also, we have 1 € R*, and la = al = a, so R* has an identity e = 1. Fimally7 given any
a € R* = R\ {0}, it follows that a # 0, so the element a~* = 1 is defined. As aa™! =al =1
and a 'a = 1, it follows that each element a € R* has an inverse a~!.

Thus R* is a group.

Given the groups R* and Z, let G = R*XZ. Define a binary operation on this set as (a,m)o(b,n) =
(ab,m 4 n). Show that G is a group under this operation.

Let’s verify each of the three group axioms.

1. Note that o is associative, as follows.

[(@,m)o (b,n)]o(c,k) = (abym+n)o(ck)
abe,m +n + k)

a,m) o (bc,n + k)
a,m) o [(b,n) o (¢, k)]

2. Notice that (1,0) is an identity because (a,m) o (1,0) = (a-1,m + 0) = (a,m) and (1,0) o
(a,m) = (1-a,0+m) = (a,m) for each (a,m) € G.

3. Notice that each element (a,m) € G has an inverse (£, —m) because (a,m)o (%, —m) = (1,0)

and (1, —m) o (a,m) = (1,0). (Recall that (1,0) is the identity.)

(
(
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We’ve shown that (G, o) is associative, has an identity element (1,0), and each element has an
inverse. Thus it is a group.

For each a € Zj, find a b for which a +b=b+a =0 (mod n).

Just let b = [n — a]. Then [a] + [b] = [a] + [n —a] = [a +n — a] = [n] = [0].
This means a + b = 0 (mod n).



