28. Prove that right- and left-cancellation hold for a group G. That is, prove that when $a, b, c \in G$, then ba = ca implies b = c, and ab = ac implies b = c.

Proof. Suppose $a, b, c \in G$, and ba = ca. Multiply both sides by a^{-1} on the right to get

$$(ba)a^{-1} = (ca)a^{-1}.$$

Using associativity, this becomes

$$b(aa^{-1}) = c(aa^{-1})$$
$$be = ce$$
$$b = c.$$

Thus we have shown ba = ca implies b = c.

Now suppose ab = ac. Multiply both sides by a^{-1} on the left to get

$$a^{-1}(ab) = a^{-1}(ac).$$

Next use associativity to get

$$(a^{-1}a)b = (a^{-1}a)c$$
$$eb = ec$$
$$b = c.$$

Thus we have shown ab = ac implies b = c.

30. Prove that if G is a group of even order, then there is an element $a \in G$, with $a \neq e$, and $a^2 = e$.

Proof. (Contrapositive) Suppose that there is no element $a \in G$ for which $a \neq e$ and $a^2 = e$. Thus, for each non-identity element $a \in G$, we have $a^2 \neq e$, which is to say $aa \neq e$. This means that $a^{-1} \neq a$. Consequently any $a \in G$ (other than e) has an inverse that is unequal to a.

Thus the non-identity elements of G can be grouped in pairs a and a^{-1} . In fact, imagine listing the non-identity elements of G in a table as follows, so each column contains a particular element $a_i \in G$ and its inverse a_i^{-1} , and every element of G (other than e) appears exactly once in the table.

a_1	a_2	a_3	a_4	•••	a_n
a_1^{-1}	a_2^{-1}	a_3^{-1}	a_4^{-1}	•••	a_n^{-1}

It follows that G has an even number 2n of non-identity elements. But, in addition, G has the identity element e. Therefore G has a total of 2n + 1 elements. Consequently G has odd order.

31. Let G be a group and suppose $(ab)^2 = a^2b^2$ for each $a, b \in G$. Prove that G is abelian.

Proof. Suppose G is a group and $(ab)^2 = a^2b^2$ for each $a, b \in G$. Take any two elements $a, b \in G$. Then we have $(ab)(ab) = a^2b^2$, that is abab = aabb, which is a(bab) = a(abb). Cancellation (Exercise 28 above) gives

$$bab = abb$$
,

or (ba)b = (ab)b. Cancellation again gives ba = ab. We have now shown that ba = ab for any $a, b \in G$. This means G is abelian.

32. Find all subgroups of $\mathbb{Z}_3 \times \mathbb{Z}_3$. Deduce that $\mathbb{Z}_3 \times \mathbb{Z}_3$ is not the same as \mathbb{Z}_9 .

The subgroups are as follows: $H_1 = \{(0,0)\}$ $H_2 = \{(0,0), (1,0), (2,0)\}$ $H_3 = \{(0,0), (0,1), (0,2)\}$ $H_4 = \{(0,0), (1,1), (2,2)\}$ $H_5 = \{(0,0), (1,2), (2,1)\}$ $H_6 = \{(0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2)\}$

By contrast, \mathbb{Z}_9 has only three subgroups:

$$\begin{split} H_1 &= \{0\} \\ H_2 &= \{0,3,6\} \\ H_3 &= \{0,1,2,3,4,5,6,7,8\}. \end{split}$$

Therefore $\mathbb{Z}_3 \times \mathbb{Z}_3$ and \mathbb{Z}_9 have different structures and are not the same.

39. Prove that $G = \{a + b\sqrt{2} : a, b \in \mathbb{Q} \text{ and } a \text{ and } b \text{ are not both } 0\}$ is a subgroup of \mathbb{R}^* under the group operation of multiplication.

Certainly we have $G \subseteq \mathbb{R}^*$. We will apply Proposition 3.9 to show that G is a subgroup of \mathbb{R}^* .

- 1. The identity 1 of \mathbb{R}^* has form $1 = 1 + 0\sqrt{2} \in G$, so $1 \in G$.
- 2. Consider two elements $a + b\sqrt{2}$ and $a' + b'\sqrt{2}$ in G, so $a, b \in \mathbb{Q}$ and are not both zero, and likewise for a' and b'. Their product is $(a + b\sqrt{2})(a' + b'\sqrt{2}) = (aa' + 2bb') + (ab' + ba')\sqrt{2}$, and this has the required form $x + y\sqrt{2}$, where x and y are rational. (As x = aa' + 2bb' and y = ab' + ba' are products and sums of rational numbers, they are themselves rational.) Moreover, x = (aa' + 2bb') and y = (ab' + ba') are not both zero, for otherwise the product $(a + b\sqrt{2})(a' + b'\sqrt{2}) = x + y\sqrt{2}$ of two nonzero elements of \mathbb{R}^* would be zero, which is impossible. Therefore the product $(a + b\sqrt{2})(a' + b'\sqrt{2})$ is in G.
- 3. Consider an arbitrary element $a + b\sqrt{2}$ in G. Its inverse in \mathbb{R}^* is

$$(a+b\sqrt{2})^{-1} = \frac{1}{a+b\sqrt{2}} = \frac{1}{a+b\sqrt{2}} \frac{a-b\sqrt{2}}{a-b\sqrt{2}} = \frac{a}{a-2b} + \frac{-b}{a-2b}\sqrt{2} \in G$$

Observations 1–3 above combined with Proposition 3.9 prove that G is a subgroup of \mathbb{R}^* .

40. Show that $H = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a + d = 0 \right\}$ is a subgroup of the group $G = \mathbb{M}_2(\mathbb{R})$ of 2×2 matrices under matrix addition.

Certainly we have $H \subseteq G$. We will apply Proposition 3.9 to show that H is a subgroup of G.

- 1. The additive identity matrix $O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ is in H because a + d = 0 for this matrix.
- 2. Consider two matrices $H_1 = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $H_2 = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ in H, so a + d = 0 and a' + d' = 0. Observe that $H_1 + H_2 = \begin{pmatrix} a + a' & b + b' \\ c + c' & d + d' \end{pmatrix}$ satisfies (a + a') + (d + d') = (a + d) + (a' + d') = 0, so $H_1 + H_2 \in H$.
- 3. Consider an arbitrary element $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in H, so a + d = 0. The inverse of this matrix is $\begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}$, and as (-a) + (-d) = -(a + d) = 0, this inverse is in H.

Observations 1–3 above combined with Proposition 3.9 prove that H is a subgroup of G.