
Algebra Solutions by Richard Chapter 3: Groups

28. Prove that right- and left-cancellation hold for a group G. That is, prove that when a, b, c ∈ G,
then ba = ca implies b = c, and ab = ac implies b = c.

Proof. Suppose a, b, c ∈ G, and ba = ca. Multiply both sides by a−1 on the right to get

(ba)a−1 = (ca)a−1.

Using associativity, this becomes
b(aa−1) = c(aa−1)

be = ce

b = c.

Thus we have shown ba = ca implies b = c.

Now suppose ab = ac. Multiply both sides by a−1 on the left to get

a−1(ab) = a−1(ac).

Next use associativity to get
(a−1a)b = (a−1a)c

eb = ec

b = c.

Thus we have shown ab = ac implies b = c.

30. Prove that if G is a group of even order, then there is an element a ∈ G, with a 6= e, and a2 = e.

Proof. (Contrapositive) Suppose that there is no element a ∈ G for which a 6= e and a2 = e.
Thus, for each non-identity element a ∈ G, we have a2 6= e, which is to say aa 6= e. This means
that a−1 6= a. Consequently any a ∈ G (other than e) has an inverse that is unequal to a.

Thus the non-identity elements of G can be grouped in pairs a and a−1. In fact, imagine listing
the non-identity elements of G in a table as follows, so each column contains a particular element
ai ∈ G and its inverse a−1

i , and every element of G (other than e) appears exactly once in the
table.

a1 a2 a3 a4 . . . an

a−1
1 a−1

2 a−1
3 a−1

4 . . . a−1
n

It follows that G has an even number 2n of non-identity elements. But, in addition, G has the
identity element e. Therefore G has a total of 2n+ 1 elements. Consequently G has odd order.

31. Let G be a group and suppose (ab)2 = a2b2 for each a, b ∈ G. Prove that G is abelian.

Proof. Suppose G is a group and (ab)2 = a2b2 for each a, b ∈ G. Take any two elements a, b ∈ G.
Then we have (ab)(ab) = a2b2, that is abab = aabb, which is a(bab) = a(abb). Cancellation
(Exercise 28 above) gives

bab = abb,

or (ba)b = (ab)b. Cancellation again gives ba = ab. We have now shown that ba = ab for any
a, b ∈ G. This means G is abelian.
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32. Find all subgroups of Z3 × Z3. Deduce that Z3 × Z3 is not the same as Z9.

The subgroups are as follows:
H1 = {(0, 0)}
H2 = {(0, 0), (1, 0), (2, 0)}
H3 = {(0, 0), (0, 1), (0, 2)}
H4 = {(0, 0), (1, 1), (2, 2)}
H5 = {(0, 0), (1, 2), (2, 1)}
H6 = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)}

By contrast, Z9 has only three subgroups:
H1 = {0}
H2 = {0, 3, 6}
H3 = {0, 1, 2, 3, 4, 5, 6, 7, 8}.
Therefore Z3 × Z3 and Z9 have different structures and are not the same.

39. Prove that G = {a + b
√

2 : a, b ∈ Q and a and b are not both 0} is a subgroup of R∗ under the
group operation of multiplication.

Certainly we have G ⊆ R∗. We will apply Proposition 3.9 to show that G is a subgroup of R∗.

1. The identity 1 of R∗ has form 1 = 1 + 0
√

2 ∈ G, so 1 ∈ G.
2. Consider two elements a + b

√
2 and a′ + b′

√
2 in G, so a, b ∈ Q and are not both zero, and

likewise for a′ and b′. Their product is (a + b
√

2)(a′ + b′
√

2) = (aa′ + 2bb′) + (ab′ + ba′)
√

2,
and this has the required form x + y

√
2, where x and y are rational. (As x = aa′ + 2bb′

and y = ab′+ ba′ are products and sums of rational numbers, they are themselves rational.)
Moreover, x = (aa′ + 2bb′) and y = (ab′ + ba′) are not both zero, for otherwise the product
(a + b

√
2)(a′ + b′

√
2) = x + y

√
2 of two nonzero elements of R∗ would be zero, which is

impossible. Therefore the product (a + b
√

2)(a′ + b′
√

2) is in G.
3. Consider an arbitrary element a + b

√
2 in G. Its inverse in R∗ is

(a + b
√

2)−1 =
1

a + b
√

2
=

1
a + b

√
2

a− b
√

2
a− b

√
2

=
a

a− 2b
+
−b

a− 2b

√
2 ∈ G

Observations 1–3 above combined with Proposition 3.9 prove that G is a subgroup of R∗.

40. Show that H =
{(

a b
c d

)
: a + d = 0

}
is a subgroup of the group G = M2(R) of 2×2 matrices

under matrix addition.

Certainly we have H ⊆ G. We will apply Proposition 3.9 to show that H is a subgroup of G.

1. The additive identity matrix O =
(

0 0
0 0

)
is in H because a + d = 0 for this matrix.

2. Consider two matrices H1 =
(

a b
c d

)
and H2 =

(
a′ b′

c′ d′

)
in H, so a + d = 0 and

a′ + d′ = 0. Observe that H1 + H2 =
(

a + a′ b + b′

c + c′ d + d′

)
satisfies (a + a′) + (d + d′) =

(a + d) + (a′ + d′) = 0, so H1 + H2 ∈ H.

3. Consider an arbitrary element
(

a b
c d

)
in H, so a + d = 0. The inverse of this matrix is(

−a −b
−c −d

)
, and as (−a) + (−d) = −(a + d) = 0, this inverse is in H.

Observations 1–3 above combined with Proposition 3.9 prove that H is a subgroup of G.
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