
Algebra Solutions by Richard

Chapter 3: Groups

43. Prove that the intersection of two subgroups of a group is also a subgroup.

Proof. Suppose H and K are two subgroups of a group G. In what follows, we use Proposition 3.9
to show that H ∩K is a subgroup of G.

1. Since H is a subgroup of G, we must have e ∈ H, by definition of a subgroup. For the same
reason e ∈ K. Therefore, e ∈ H ∩K, by definition of intersection.

2. Suppose h1, h2 ∈ H ∩K. Then h1, h2 ∈ H and h1, h2 ∈ K by definition of intersection. But
then we have h1h2 ∈ H and h1h2 ∈ K since H and K are subgroups (and are closed under
the group operation). Thus h1h2 ∈ H ∩K by definition of intersection.

We’ve now shown that whenever h1 and h2 are in H ∩K, the product h1h2 is also in H ∩K.

3. Suppose h ∈ H ∩ K. Then h ∈ H and h ∈ K, by definition of intersection. Therefore
h−1 ∈ H and h−1 ∈ K because H and K are subgroups. Consequently h−1 ∈ H ∩K.

We’ve now shown that whenever h is in H ∩K, the inverse h−1 is also in H ∩K.

Observations 1–3 above combined with Proposition 3.9 prove that H ∩K is a subgroup of G.

Chapter 4: Cyclic Groups

4. (b) H =
{(

0 1
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3 0

)
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=
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1 x
0 1

)
: x ∈ Z

}
5. Find the order of every element in Z18.

The following table is made with the aid of Theorem 4.6. Since a = 1 is a generator of Z18 the
theorem asserts that any b = k · a = k · 1 = k ∈ Z18 has order 18

gcd(k,18)
.

element 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
order 1 18 9 6 9 18 3 18 9 2 9 18 3 18 9 6 9 18

20. List and graph the sixth roots of unity.
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The generators are 1
2 +

√
3

2 and 1
2 −

√
3

2 . These are also the primitive sixth roots of unity.
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23. Suppose a, b ∈ G. Prove the following statements.

(a) The order of a is the same as the order of a−1.
Proof. Since we know that (an)−1 = a−n = (a−1)n, if follows that an = e if and only if
(an)−1 = e−1, if and only if (a−1)n = e. Thus the smallest n for which an = e equals the
smallest n for which (a−1)n = e. Hence the order of a is the same as that of a−1.

(b) For all g ∈ G, |a| = |g−1ag|.
Proof. It suffices to show that an = e if and only if (g−1ag)n = e, for then the smallest
n for which an = e equals the smallest n for which (g−1ag)n = e, so a and g−1ag have the
same orders.

Suppose an = e. Then

(g−1ag)n = (g−1ag)(g−1ag) · · · (g−1ag)︸ ︷︷ ︸
g−1ag n times

= g−1 aaa · · · a︸ ︷︷ ︸
a n times

g = g−1ang = g−1eg = g−1g = e.

Conversely suppose (g−1ag)n = e. This means

e = (g−1ag)n = (g−1ag)(g−1ag) · · · (g−1ag)︸ ︷︷ ︸
g−1ag n times

= g−1 aaa · · · a︸ ︷︷ ︸
a n times

g = g−1ang.

Thus we have e = g−1ang. Left-multiply both sides of this by g and you get g = ang. Now
right-multiply both sides of this by g−1 and we have e = an.
The above has shown that an = e if and only if (g−1ag)n = e, so it follows that |a| = |g−1ag|.

(c) The order of ab is the same as the order of ba.
Proof. We will show that (ab)n = e if and only if (ba)n = e, for then it follows that the
smallest n for which (ab)n = e equals the smallest n for which (ba)n = e, hence |ab| = |ba|.
Suppose (ab)n = e, so

ab ab ab ab · · · ab︸ ︷︷ ︸
ab n times

= e.

Left-multiply both sides of this by a−1, and you get bababab · · · ab = a−1. Now right-multiply
both sides of this by a, and we get

ba ba ba ba · · · ba︸ ︷︷ ︸
ba n times

= e.

This means (ba)n = e. Now we’ve shown that (ab)n = e implies (ba)n = e. Reversing this
process, we see that (ba)n = e implies (ab)n = e.

Thus we’ve shown (ab)n = e if and only if (ba)n = e. Therefore ab and ba have the same
order.

24. Let p and q be distinct primes. How many generators does Zpq have?

By Corollary 4.7, the generators of Zpq are the integers r for which 1 ≤ r < pq and gcd(r, pq) = 1.

Therefore, the elements r ∈ Zpq that are not generators are those r for which 0 ≤ r < pq and
gcd(r, pq) 6= 1. This happens if and only if r and pq have a common factor other than 1. But the
only factors of pq between 1 and pq are p and q. Thus for r not to be a generator, it must be a
multiple of p or q.

Thus the following values of r are the only ones for which r is not a generator:

0 p 2p 3p 4p . . . (q − 1)p
q 2q 3q 4q . . . (p− 1)q

There are 1 + (q − 1) + (p− 1) such values. In other words, Zpq has exactly 1 + (q − 1) + (p− 1)
elements that are not generators. The other elements are generators.

Thus Zpq has pq − (1 + (q − 1) + (p− 1)) = (p− 1)(q − 1) generators.
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