
Algebra Solutions by Richard

Chapter 5: Permutation Groups

1. Write the following permutations in cycle notation.

(b)
(

1 2 3 4 5
4 2 5 1 3

)
= (14)(35)

(d)
(

1 2 3 4 5
1 4 3 2 5

)
= (42)

2. Compute each of the following.

(d) (1423)(34)(56)(1324) = (12)(56)

(i) Here we will use the facts that (1254)−2 =
(
(1254)−1

)2 and (1254)−1 = (4521).

(123)(45)(1254)−2 = (123)(45)
(
(1254)−1

)2

= (123)(45)(4521)2

= (123)(45)(4521)(4521)
= (143)(25)

(j) (1254)100 =
(
(1254)4

)25 = (1)25 = (1)

(k) |(1254)| = 4

3. Write the following permutations as products of transpositions and identify them as even or odd.

(b) (156)(234) = (15)(56)(23)(42) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . This permutation is even.

(d) (142637) = (13)(12)(37)(26)(14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . This permutation is odd.

10. Find an element of largest order in Sn for n = 3, 4, 5, 6, 7, 8, 9, 10.

Recall that every permutation is a product of disjoint cycles. Also, the order of a product
of disjoint cycles is the least common multiple of the orders of the cycles. For example the
permutation (123)(4567)(89) has order lcm(3, 4, 2) = 12. Thus we can find an element of largest
order in Sn by looking for a product of disjoint cycles, such that the lcm of the orders of the
cycles is as large as possible.

(a) An element of largest order in S3 is (123), and it has order 3.

(b) An element of largest order in S4 is (1234), and it has order 4.

(c) An element of largest order in S5 is (12)(345), and it has order 2 · 3 = 6.

(d) An element of largest order in S6 is (123456), and it has order 6.

(e) An element of largest order in S7 is (123)(4567), and it has order 3 · 4 = 12.

(f) An element of largest order in S8 is (123)(45678), and it has order 3 · 5 = 15.

(g) An element of largest order in S9 is (1234)(56789), and it has order 4 · 5 = 20.

(h) An element of largest order in S10 is (01)(234)(56789), and it has order 2 · 3 · 5 = 30.
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23. If σ is a cycle of odd length, then σ2 is also a cycle.

Proof. Suppose σ ∈ Sn is a cycle of odd length 2k + 1. Then we have

σ = (a0 a1 a2 a3 a4 . . . a2k−1 a2k),

for some subset X = {a0, a1, a2, . . . , a2k} ⊆ {1, 2, 3, 4, . . . , n}. This means that

σ(ai) = ai+1

for each ai ∈ X (where the i + 1 is computed mod 2k + 1), while σ(x) = x for each x ∈
{1, 2, 3, . . . , n} \X.

Now consider the effect of σ2 = σσ. The above paragraph implies that for each ai ∈ X we have
σ2(ai) = σ(σ(ai)) = σ(ai+1) = ai+2, where, again, the addition i+ 2 is done modulo 2k + 1 and
σ2(x) = x for any x not in X. From this we see that

σ2 = (a0 a2 a4 a6 . . . a2k, a1, a3, a5, . . . a2k−1),

and is therefore a cycle.

31. For α, β ∈ Sn, define α ∼ β if there is some σ ∈ Sn for which σασ−1 = β. Show that ∼ is an
equivalence relation.

Proof. We need to show that ∼ is reflexive, symmetric and transitive.

(1) Observe that for any α ∈ Sn we have σασ−1 = α, where σ = id ∈ Sn. Thus σ is reflexive.
(2) Suppose α ∼ β. By definition of ∼ this means that there is some σ ∈ Sn for which

σασ−1 = β. Left-multiplying both sides of this by σ−1 gives us ασ−1 = σ−1β. Now right-
multiplying both sides by σ gives α = σ−1βσ. Rewrite this as

σ−1β(σ−1)−1 = α. (1)

As σ ∈ Sn, we also have σ−1 ∈ Sn, so Equation (1) and the definition of ∼ now yields β ∼ α.
We’ve shown α ∼ β implies β ∼ α, so ∼ is symmetric.

(3) Now we will show that ∼ is transitive. Suppose α ∼ β and β ∼ γ. Then there are
permutations σ, τ ∈ Sn for which σασ−1 = β and τβτ−1 = γ. Inserting the value for β
given by the first equation into the second and using associativity yields

τ(σασ−1)τ−1 = γ

(τσ)α(σ−1τ−1) = γ

(τσ)α(τσ)−1 = γ.

As τ, σ ∈ Sn, we also have τσ ∈ Sn. Hence the above equation shows α ∼ γ.
Having shown that α ∼ β and β ∼ γ together imply α ∼ γ, we see that ∼ is transitive.

The above considerations show that ∼ is an equivalence relation.

34. Suppose α is an even permutation. Prove that α−1 is also even. Is the same true if α is odd?

Proof. Suppose α is even. This means there is an even integer p and transpositions τ1, τ2, . . . τp
for which α = τ1τ2τ3 · · · τp−1τp. Now the inverse of each transposition τi is of course τ−1

i = τi.
Therefore we have

α−1 = (τ1τ2τ3 · · · τp−1τp)−1

= τ−1
p τ−1

p−1 · · · τ
−1
3 τ−1

2 τ−1
1

= τpτp−1 · · · τ3τ2τ1.

This expresses α−1 as a product of an even number of transpositions, so α−1 is even.

By the same reasoning, if α is odd, its inverse α−1 will be odd too. Thus it is not true that if α
is odd, then its inverse is even.
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