Chapter 5: Permutation Groups

1. Write the following permutations in cycle notation.

(b)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix} = (14)(35)$$

(d) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 2 & 5 \end{pmatrix} = (42)$

- 2. Compute each of the following.
 - (d) (1423)(34)(56)(1324) = (12)(56)
 - (i) Here we will use the facts that $(1254)^{-2} = ((1254)^{-1})^2$ and $(1254)^{-1} = (4521)$.

$$(123)(45)(1254)^{-2} = (123)(45)((1254)^{-1})^{2}$$

= (123)(45)(4521)^{2}
= (123)(45)(4521)(4521)
= (143)(25)

(j) $(1254)^{100} = ((1254)^4)^{25} = (1)^{25} = (1)$ (k) |(1254)| = 4

3. Write the following permutations as products of transpositions and identify them as even or odd.

- (b) (156)(234) = (15)(56)(23)(42)..... This permutation is even.
 (d) (142637) = (13)(12)(37)(26)(14).... This permutation is odd.
- 10. Find an element of largest order in S_n for n = 3, 4, 5, 6, 7, 8, 9, 10.

Recall that every permutation is a product of disjoint cycles. Also, the order of a product of disjoint cycles is the least common multiple of the orders of the cycles. For example the permutation (123)(4567)(89) has order lcm(3, 4, 2) = 12. Thus we can find an element of largest order in S_n by looking for a product of disjoint cycles, such that the lcm of the orders of the cycles is as large as possible.

- (a) An element of largest order in S_3 is (123), and it has order 3.
- (b) An element of largest order in S_4 is (1234), and it has order 4.
- (c) An element of largest order in S_5 is (12)(345), and it has order $2 \cdot 3 = 6$.
- (d) An element of largest order in S_6 is (123456), and it has order 6.
- (e) An element of largest order in S_7 is (123)(4567), and it has order $3 \cdot 4 = 12$.
- (f) An element of largest order in S_8 is (123)(45678), and it has order $3 \cdot 5 = 15$.
- (g) An element of largest order in S_9 is (1234)(56789), and it has order $4 \cdot 5 = 20$.
- (h) An element of largest order in S_{10} is (01)(234)(56789), and it has order $2 \cdot 3 \cdot 5 = 30$.

23. If σ is a cycle of odd length, then σ^2 is also a cycle.

Proof. Suppose $\sigma \in S_n$ is a cycle of odd length 2k + 1. Then we have

 $\sigma = (a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ \dots \ a_{2k-1} \ a_{2k}),$

for some subset $X = \{a_0, a_1, a_2, ..., a_{2k}\} \subseteq \{1, 2, 3, 4, ..., n\}$. This means that

 $\sigma(a_i) = a_{i+1}$

for each $a_i \in X$ (where the i + 1 is computed mod 2k + 1), while $\sigma(x) = x$ for each $x \in \{1, 2, 3, \ldots, n\} \setminus X$.

Now consider the effect of $\sigma^2 = \sigma \sigma$. The above paragraph implies that for each $a_i \in X$ we have $\sigma^2(a_i) = \sigma(\sigma(a_i)) = \sigma(a_{i+1}) = a_{i+2}$, where, again, the addition i + 2 is done modulo 2k + 1 and $\sigma^2(x) = x$ for any x not in X. From this we see that

$$\sigma^2 = (a_0 \ a_2 \ a_4 \ a_6 \ \dots \ a_{2k}, \ a_1, \ a_3, \ a_5, \ \dots \ a_{2k-1})$$

and is therefore a cycle.

31. For $\alpha, \beta \in S_n$, define $\alpha \sim \beta$ if there is some $\sigma \in S_n$ for which $\sigma \alpha \sigma^{-1} = \beta$. Show that \sim is an equivalence relation.

Proof. We need to show that \sim is reflexive, symmetric and transitive.

- (1) Observe that for any $\alpha \in S_n$ we have $\sigma \alpha \sigma^{-1} = \alpha$, where $\sigma = id \in S_n$. Thus σ is reflexive.
- (2) Suppose $\alpha \sim \beta$. By definition of ~ this means that there is some $\sigma \in S_n$ for which $\sigma \alpha \sigma^{-1} = \beta$. Left-multiplying both sides of this by σ^{-1} gives us $\alpha \sigma^{-1} = \sigma^{-1}\beta$. Now right-multiplying both sides by σ gives $\alpha = \sigma^{-1}\beta\sigma$. Rewrite this as

$$\sigma^{-1}\beta(\sigma^{-1})^{-1} = \alpha. \tag{1}$$

As $\sigma \in S_n$, we also have $\sigma^{-1} \in S_n$, so Equation (1) and the definition of ~ now yields $\beta \sim \alpha$. We've shown $\alpha \sim \beta$ implies $\beta \sim \alpha$, so ~ is symmetric.

(3) Now we will show that ~ is transitive. Suppose $\alpha \sim \beta$ and $\beta \sim \gamma$. Then there are permutations $\sigma, \tau \in S_n$ for which $\sigma \alpha \sigma^{-1} = \beta$ and $\tau \beta \tau^{-1} = \gamma$. Inserting the value for β given by the first equation into the second and using associativity yields

$$\tau(\sigma\alpha\sigma^{-1})\tau^{-1} = \gamma$$

(\tau\sigma\alpha(\sigma^{-1}\tau^{-1}) = \gamma
(\tau\sigma\alpha(\tau\sigma)^{-1} = \gamma.

As $\tau, \sigma \in S_n$, we also have $\tau \sigma \in S_n$. Hence the above equation shows $\alpha \sim \gamma$. Having shown that $\alpha \sim \beta$ and $\beta \sim \gamma$ together imply $\alpha \sim \gamma$, we see that \sim is transitive.

The above considerations show that \sim is an equivalence relation.

34. Suppose α is an even permutation. Prove that α^{-1} is also even. Is the same true if α is odd? **Proof.** Suppose α is even. This means there is an even integer p and transpositions $\tau_1, \tau_2, \ldots, \tau_p$

for which $\alpha = \tau_1 \tau_2 \tau_3 \cdots \tau_{p-1} \tau_p$. Now the inverse of each transposition τ_i is of course $\tau_i^{-1} = \tau_i$. Therefore we have

$$\alpha^{-1} = (\tau_1 \tau_2 \tau_3 \cdots \tau_{p-1} \tau_p)^{-1} = \tau_p^{-1} \tau_{p-1}^{-1} \cdots \tau_3^{-1} \tau_2^{-1} \tau_1^{-1} = \tau_p \tau_{p-1} \cdots \tau_3 \tau_2 \tau_1.$$

This expresses α^{-1} as a product of an even number of transpositions, so α^{-1} is even.

By the same reasoning, if α is odd, its inverse α^{-1} will be odd too. Thus it is not true that if α is odd, then its inverse is even.