
Algebra Solutions by Richard

Chapter 6: Cosets and Lagrange’s Theorem

5. List the left- and right-cosets of each of the following:

(b) 〈3〉 in U(8).
The group U(8) consists of the units in Z8, that is U(8) = {1, 3, 5, 7}.
Notice that 〈3〉 = {3n : n ∈ Z} = {1, 3}.
Thus the left-cosets of 〈3〉 are 1〈3〉 = {1, 3} and 5〈3〉 = {5, 7}.
Since U(8) is abelian, the right cosets are the same.

(g) T in C∗.
Since C∗ is abelian, the left cosets will be the same as the right cosets, so it suffices to describe
only the left cosets ωT. Take an element ω ∈ C∗, and consider the left coset ωT. Any element of
this coset must have form ωz with z ∈ T. Notice that |ωz| = |ω| · |z| = |ω| · 1 = |ω|. This means
any element of ωT is on the circle of radius |ω| centered at the origin. That is, ωT ⊆ |ω|T, and
by Lemma 6.1, ωT = |ω|T. In words, any left coset ωT is a circle of radius |ω| in C∗, centered
at the origin. Following is a picture of some left cosets of T.
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12 Suppose H is a subgroup of a group G. If ghg−1 ∈ H for every g ∈ G and h ∈ H, then left cosets
are identical to right cosets.

Proof. Let G and H be as stated, and suppose ghg−1 ∈ H for every g ∈ G and h ∈ H. Given an
arbitrary g ∈ G, we need to show that gH = Hg.

Thus take an arbitrary g ∈ G. We will show gH = Hg by showing gH ⊆ Hg and Hg ⊆ gH.

First we show gH ⊆ Hg. Suppose x ∈ gH. This means x = gh for some h ∈ H. Then also
x = ghe = gh(g−1g) = (ghg−1)g. By assumption, ghg−1 = h′ ∈ H, so the above gives x = h′g ∈ Hg.
We have shown x ∈ gH implies x ∈ Hg, so gH ⊆ Hg.

Next we show Hg ⊆ gH. Suppose x ∈ Hg. This means x = hg for some h ∈ H. Then also
x = ehg = (gg−1)h(g−1)−1 = g(g−1h(g−1)−1). By assumption, g−1h(g−1)−1 = h′ ∈ H, so the above
gives x = gh′ ∈ gH. We have shown x ∈ Hg implies x ∈ gH, so Hg ⊆ gH.

It now follows that gH = Hg.
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14 Suppose an element g in a group satisfies gn = e. Show that the order of g divides n.

Proof. Suppose gn = e and the order of g is k, that is, k is the smallest natural number for which
gk = e. We need to show k|n.

By the division algorithm, there are integers q and r, with 0 ≤ r < k for which

n = qk + r. (1)

Now observe that
e = gn = gqk+r = gqkgr = (gk)qgr = eqgr = egr = gr.

Therefore we have shown e = gr. But recall that 0 ≤ r < k, and k is smallest natural number for
which gk = e. It follows that r = 0. Now Equation (1) gives n = qk, so k|n. We have now shown
that the order of g divides n.

18. If [G : H] = 2, prove that gH = Hg.

Proof. Suppose [G : H] = 2, which means are only two left-cosets of H in G. One of these cosets
is H (as H = eH). Since the left cosets partition G, and there are only two cosets, the other coset
besides H must be the set difference G \H. Thus the two left cosets are H and G \H.

By Theorem 6.3, there are also just two right-cosets of H in G. Reasoning as in the previous
paragraph, we see that the two right cosets must be H and G \H.

Now consider two cosets gH and Hg. By the previous paragraph, each one equals either the set H
or the set G \H. Now g is in both gH and Hg, but g is not in both H and G \H. It follows that it
is impossible for one of gH and Hg to be H and the other to be G \H. Therefore either both gH
and Hg equal H, or both equal G \H. Either way we have gH = Hg.

21. If G is a group of order pn, where n ≥ 2 and p is a prime, show that G must have a proper subgroup
H of order p.

Proof. Assume a group G has order pn, where p is prime and n ≥ 2. Take a non-identity element
a ∈ G. By Lagrange’s Theorem, |〈a〉| must divide pn, so |〈a〉| is one of the numbers p, p2, p3, . . . , pn.
Thus |〈a〉| = pm for some integer m with 1 ≤ m ≤ n. Thus

〈a〉 = {a1, a2, a3, a4, . . . , apm−1, apm},

where the final element listed is apm
= e. Thus we have

e = apm
= apm−1p =

(
apm−1

)p

It follows that apm−1 ∈ G has order p. Therefore H = 〈apm−1〉 is a subgroup of G with order p.

Chapter 3, #50. If xy = x−1y−1 for every x, y ∈ G, then G is abelian.

Proof. Suppose xy = x−1y−1 for every x, y ∈ G. Then given any x ∈ G, we can set y = e, and get
xe = x−1e−1, which yields x = x−1. Thus xx = e for each x ∈ G.

Now take any a, b ∈ G. By the above, we must have (ab)(ab) = e, or abab = e. Left-multiply both
sides of this by a to get aabab = a. Now right-multiply both sides of this by b to get aababb = ab,
which is (aa)ba(bb) = ab. Using the fact that aa = e and bb = e, this becomes ba = ab. It follows
that G is abelian.
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