
Algebra Solutions by Richard

Chapter 9: Isomorphisms

2 Let H be the set of matrices of form
(

a b
−b a

)
in GL2(R). Prove that C∗ is isomorphic to H.

Let’s begin by carefully writing down this set of matrices in set notation. Notice that the determinant

of such a matrix is a2 + b2, so H is the set H =
{(

a b
−b a

)
: a, b ∈ R, a2 + b2 6= 0

}
.

Now, define a map ϕ : C∗ → H as

ϕ(a + bi) =
(

a b
−b a

)
.

This is a well-defined map, because if a + bi ∈ C∗, then 0 < |a + bi| =
√

a2 + b2, so a2 + b2 6= 0,

hence ϕ(a + bi) really is an element of H. This map is clearly surjective, for any matrix
(

a b
−b a

)
in H is the image of the complex number a + bi in C∗. Also, the map is injective, because if
ϕ(a + bi) = ϕ(c + di) we get (

a b
−b a

)
=

(
c d
−d c

)
,

and hence a = c and b = d, so a + bi = c + di. As it is surjective and injective, ϕ is a bijection.

To complete the proof we need to show ϕ((a + bi)(c + di)) = ϕ(a + bi)ϕ(c + di). Indeed

ϕ(a + bi)ϕ(c + di) =
(

a b
−b a

) (
c d
−d c

)
=

(
ac− bd ad + bc
−bc− ad −bd + ac

)
=

(
ac− bd ad + bc

−(ad + bc) ac− bd

)
= ϕ((ac− bd) + (ad + bc)i)
= ϕ((a + bi)(c + di)).

This completes the demonstration.

5 Show U(5) is isomorphic to U(10), but U(12) is not.

To answer this, it may be helpful to consider the Caley tables, as follows.

U(5) = {1, 2, 3, 4} U(10) = {1, 3, 7, 9} U(12) = {1, 5, 7, 11}

· 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

· 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

· 1 5 7 11
1 1 5 7 11
5 5 1 11 1
7 7 11 1 5
11 11 7 5 1

From these, it is easy to make the following calculations:
For U(5) we have 〈2〉 = {2k : k ∈ Z} = {2, 4, 3, 1} = U(5), so U(5) is cyclic.

For U(10) we have 〈3〉 = {3k : k ∈ Z} = {3, 9, 7, 1} = U(10), so U(10) is cyclic.

Since U(5) and U(10) are each cyclic with four elements, Theorem 9.3 says U(5) ∼= Z4
∼= U(10).

Concerning U(12), 〈1〉 = {1}, 〈5〉 = {1, 5}, 〈7〉 = {1, 7} and 〈11〉 = {1, 11}. Therefore U(12) is not
cyclic, hence it cannot be isomorphic to the cyclic groups U(5) and U(10). (By Theorem 9.1.)
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9. We have already seen (Exercise 7 in Chapter 1) that the set R \ {−1} is a group under the operation
a ∗ b = a + b + ab. Now show that this group is isomorphic to R∗.
Proof. Consider the map ϕ : R \ {−1} → R∗ defined as ϕ(x) = 1 + x.

This map is surjective because if b ∈ R∗, then b− 1 ∈ R \ {−1}, and ϕ(b− 1) = 1 + b− 1 = b. This
map is also injective, for if ϕ(x) = ϕ(y), then 1 + x = 1 + y, so x = y. As ϕ is both surjective and
injective, it is bijective.

To show ϕ is an isomorphism, we now need only to verify ϕ(x ∗ y) = x · y for each x, y ∈ R \ {−1}.
Thus take x, y ∈ R \ {−1} and observe

ϕ(x ∗ x) = ϕ(x + y + xy) = 1 + x + y + xy = (1 + x)(1 + y) = ϕ(x)ϕ(y).

Therefore ϕ(x ∗ y) = ϕ(x) · ϕ(y), so ϕ is an isomorphism.

Note: The map ϕ : R \ {−1} → R∗ defined as ϕ(x) = 1
1+x also works.

16. Find the order of each of the following elements.

(b) (6, 15, 4) in Z30 × Z45 × Z24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . has order lcm(5, 3, 6) = 30.
(d) (8, 8, 8) in Z10 × Z24 × Z80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . has order lcm(5, 3, 10) = 30.

22. Let G be a group of order 20. If G has subgroups H and K of orders 4 and 5, respectively, such that
hk = kh for all h ∈ H and k ∈ K, prove that G is the internal direct product of H and K.

Proof. According to the definition of the internal direct product, we must check three criteria:

• G = HK = {hk : h ∈ H, k ∈ K}
• H ∩K = {e}
• hk = kh for all h ∈ H and k ∈ K

The third criteria already holds. To prove that the second holds, take an arbitrary element a ∈ H∩K.
Then a ∈ H and a ∈ K. Thus 〈a〉 ⊆ H and 〈a〉 ⊆ K. By Lagrange’s Theorem, |〈a〉| divides |H| = 5,
and likewise |〈a〉| divides |H| = 4. Consequently |〈a〉| = 1, that is, 〈a〉 = {e}. It follows that a = e.
We have now shown that any element a ∈ H ∩K has to be a = e, so H ∩K = {e}.

Finally, we need to show G = HK. Consider the map ϕ : H ×K → G defined as ϕ((h, k)) = hk.
We claim that this map is injective. To see this, suppose ϕ((h, k)) = ϕ((h′, k′)), so hk = h′k′. From
this, h′−1h = k′k−1. By closure in a subgroup. the expression on the left is in H and the expression
on the right is in K. But since H ∩K = {e}, it must be that h′−1h = k′k−1 = e. This yields h = h′

and k = k′, so (h, k) = (h′, k′), which proves that ϕ is injective.

Now we have an injective map ϕ : H × K → G. But since |H × K| = 20 = |G|, this map must
also be surjective. Since it is surjective, and g ∈ G can be written as g = ϕ(h, k) = hk for some
(h, k) ∈ H ×K. Consequently, G = HK. We have now verified all three criteria.

50. Prove that A×B is abelian if and only if both A and B are abelian.

Proof. Suppose A×B is abelian. Take any x, y ∈ A and z, w ∈ B. Since A×B is abelian, we have

(xy, zw) = (x, z)(y, w)
= (y, w)(x, z) = (yx, wz).

So (xy, zw) = (yx, wz), which means xy = yx and zw = wz. Hence both A and B are abelian.

Conversely suppose both A and B are abelian. Take any two (x, z), (y, w) ∈ A × B. Since xy = yx
and zw = wz, we have (x, z)(y, w) = (xy, zw) = (yx, wz) = (y, w)(x, z). Thus A×B is abelian.
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