Algebra Solutions by Richard

Chapter 9: Isomorphisms

2 Let H be the set of matrices of form < _cg 2 > in GL2(R). Prove that C* is isomorphic to H.

Let’s begin by carefully writing down this set of matrices in set notation. Notice that the determinant

of such a matrix is a? + b2, soHisthesetH:{< _Z 2) ca,b R, a2+b2750}.

o(a + bi) = < f‘b Z)

This is a well-defined map, because if a 4+ bi € C*, then 0 < |a + bi| = Va2 + b2, so a® + b* # 0,

Now, define a map ¢ : C* — H as

hence p(a + bi) really is an element of H. This map is clearly surjective, for any matrix < _(Z a >

in H is the image of the complex number a + bi in C*. Also, the map is injective, because if
w(a+bi) = p(c+ di) we get
a b\ c d
< -b a ) - < —d ¢ > ’

and hence a = cand b =d, so a+ bi = ¢+ di. As it is surjective and injective, ¢ is a bijection.

To complete the proof we need to show ¢((a + bi)(c+ di)) = ¢(a + bi)p(c + di). Indeed

pla+ bi)p(e+ di) = (_b a)( o f)

ac—bd ad-+ bc
—bc—ad —bd+ ac

(
_ ( ac — bd ad+bc>

(ad+bc) ac—bd
= ¢((ac —bd) + (ad + be)i)
o((a+ bi)(c+ di)).

This completes the demonstration.

5 Show U(5) is isomorphic to U(10), but U(12) is not.
To answer this, it may be helpful to consider the Caley tables, as follows.
Ub)=1{1,2,3,4} U(10) ={1,3,7,9} U(12) = {1,5,7,11}

|1 2 3 4 |13 709 |1 5 7 11
11 2 3 4 11 3 79 11 5 7 11
212 4 1 3 313 9 17 505 1 11 1
313 1 4 2 7171 9 3 77 111

414 3 2 1 919 7 3 1 1|1 7 1

From these, it is easy to make the following calculations:
For U(5) we have (2) = {2¥ : k € Z} = {2,4,3,1} = U(5), so U(5) is cyclic.

For U(10) we have (3) = {3* : k € Z} = {3,9,7,1} = U(10), so U(10) is cyclic.
Since U(5) and U(10) are each cyclic with four elements, Theorem 9.3 says U(5) = Z4 = U(10).

Concerning U(12), (1) = {1}, (5) = {1,5}, (7) = {1,7} and (11) = {1,11}. Therefore U(12) is not
cyclic, hence it cannot be isomorphic to the cyclic groups U(5) and U(10). (By Theorem 9.1.)
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We have already seen (Exercise 7 in Chapter 1) that the set R\ {—1} is a group under the operation
a*xb=a+ b+ ab. Now show that this group is isomorphic to R*.

Proof. Consider the map ¢ : R\ {—1} — R* defined as ¢(z) =1+ z.

This map is surjective because if b € R*, then b —1 € R\ {—1}, and ¢(b—1) =1+b—1=b. This
map is also injective, for if p(z) = ¢(y), then 1 + x = 1+ y, so x = y. As ¢ is both surjective and
injective, it is bijective.

To show ¢ is an isomorphism, we now need only to verify p(z *y) = x -y for each z,y € R\ {—1}.
Thus take z,y € R\ {—1} and observe

plesxr)=p@@t+yt+ay)=1l+r+y+tay=1+2)(1+y)=9@)ey).

Therefore p(z *xy) = p(x) - p(y), so ¢ is an isomorphism. [ |
Note: The map ¢ : R\ {—1} — R* defined as p(x) = H% also works.

Find the order of each of the following elements.

(b) (6,15,4) in Z30 X 2245 X Zigg +vvveeeeeee e has order lem(5, 3,6) = 30.
(d) (8,8,8) I Z10 X Zog X ZLZY + - v veeeaeeee e has order lem(5,3,10) = 30.

Let G be a group of order 20. If G has subgroups H and K of orders 4 and 5, respectively, such that
hk = kh for all h € H and k € K, prove that GG is the internal direct product of H and K.

Proof. According to the definition of the internal direct product, we must check three criteria:

e G=HK ={hk:he H ke K}
e HNK = {e}
e hk=Fkhforallhe Hand ke K

The third criteria already holds. To prove that the second holds, take an arbitrary element a € HNK.
Then a € H and a € K. Thus (a) C H and (a) C K. By Lagrange’s Theorem, |(a)| divides |H| = 5,
and likewise |(a)| divides |H| = 4. Consequently |(a)| = 1, that is, (a) = {e}. It follows that a = e.
We have now shown that any element a € H N K has to be a = e, so HN K = {e}.

Finally, we need to show G = HK. Consider the map ¢ : H x K — G defined as ¢((h,k)) = hk.
We claim that this map is injective. To see this, suppose ¢((h,k)) = ¢((h',k')), so hk = W'k'. From
this, h’~1h = k’k~1. By closure in a subgroup. the expression on the left is in H and the expression
on the right is in K. But since H N K = {e}, it must be that h'~'h = k'k~! = e. This yields h = 1’
and k =K', so (h, k) = (W', k'), which proves that ¢ is injective.

Now we have an injective map ¢ : H x K — G. But since |H x K| = 20 = |G|, this map must
also be surjective. Since it is surjective, and g € G can be written as g = ¢(h, k) = hk for some
(h,k) € H x K. Consequently, G = HEK. We have now verified all three criteria. [ |

Prove that A x B is abelian if and only if both A and B are abelian.
Proof. Suppose A x B is abelian. Take any x,y € A and z,w € B. Since A x B is abelian, we have
(zy, zw) = (z,2)(y,w)
= (pw)(z,z) = (yz,wz).
So (xy, zw) = (yx,wz), which means zy = yx and zw = wz. Hence both A and B are abelian.

Conversely suppose both A and B are abelian. Take any two (z, 2), (y,w) € A X B. Since zy = yx
and zw = wz, we have (z,2)(y,w) = (zy, z2w) = (yz,wz) = (y,w)(x,z). Thus A x B is abelian. W



