Chapter 9: Isomorphisms

2 Let *H* be the set of matrices of form $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ in $\operatorname{GL}_2(\mathbb{R})$. Prove that \mathbb{C}^* is isomorphic to *H*. Let's begin by carefully writing down this set of matrices in set notation. Notice that the determinant of such a matrix is $a^2 + b^2$, so *H* is the set $H = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R}, \ a^2 + b^2 \neq 0 \right\}$. Now, define a map $\varphi : \mathbb{C}^* \to H$ as

$$\varphi(a+bi) = \left(\begin{array}{cc} a & b \\ -b & a \end{array}\right)$$

This is a well-defined map, because if $a + bi \in \mathbb{C}^*$, then $0 < |a + bi| = \sqrt{a^2 + b^2}$, so $a^2 + b^2 \neq 0$, hence $\varphi(a + bi)$ really is an element of H. This map is clearly surjective, for any matrix $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ in H is the image of the complex number a + bi in \mathbb{C}^* . Also, the map is injective, because if $\varphi(a + bi) = \varphi(c + di)$ we get

$$\left(\begin{array}{cc}a&b\\-b&a\end{array}\right) = \left(\begin{array}{cc}c&d\\-d&c\end{array}\right),$$

and hence a = c and b = d, so a + bi = c + di. As it is surjective and injective, φ is a bijection. To complete the proof we need to show $\varphi((a + bi)(c + di)) = \varphi(a + bi)\varphi(c + di)$. Indeed

$$\begin{aligned} \varphi(a+bi)\varphi(c+di) &= \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} c & d \\ -d & c \end{pmatrix} \\ &= \begin{pmatrix} ac-bd & ad+bc \\ -bc-ad & -bd+ac \end{pmatrix} \\ &= \begin{pmatrix} ac-bd & ad+bc \\ -(ad+bc) & ac-bd \end{pmatrix} \\ &= \varphi((ac-bd)+(ad+bc)i) \\ &= \varphi((a+bi)(c+di)). \end{aligned}$$

This completes the demonstration.

5 Show U(5) is isomorphic to U(10), but U(12) is not.

To answer this, it may be helpful to consider the Caley tables, as follows.

$U(5) = \{1, 2, 3, 4\}$						$U(10) = \{1, 3, 7, 9\}$						$U(12) = \{1, 5, 7, 11\}$				
	1	2	3	4			1	3	7	9			1	5	7	11
1	1	2	3	4	-	1	1	3	7	9		1	1	5	7	11
2	2	4	1	3		3	3	9	1	$\overline{7}$		5	5	1	11	1
3	3	1	4	2		$\overline{7}$	7	1	9	3		7	$\overline{7}$	11	1	5
4	4	3	2	1		9	9	7	3	1		11	11	7	5	1

From these, it is easy to make the following calculations:

For U(5) we have $\langle 2 \rangle = \{2^k : k \in \mathbb{Z}\} = \{2, 4, 3, 1\} = U(5)$, so U(5) is cyclic.

For U(10) we have $\langle 3 \rangle = \{3^k : k \in \mathbb{Z}\} = \{3, 9, 7, 1\} = U(10)$, so U(10) is cyclic.

Since U(5) and U(10) are each cyclic with four elements, Theorem 9.3 says $U(5) \cong \mathbb{Z}_4 \cong U(10)$.

Concerning U(12), $\langle 1 \rangle = \{1\}$, $\langle 5 \rangle = \{1, 5\}$, $\langle 7 \rangle = \{1, 7\}$ and $\langle 11 \rangle = \{1, 11\}$. Therefore U(12) is **not** cyclic, hence it cannot be isomorphic to the cyclic groups U(5) and U(10). (By Theorem 9.1.)

9. We have already seen (Exercise 7 in Chapter 1) that the set $\mathbb{R} \setminus \{-1\}$ is a group under the operation a * b = a + b + ab. Now show that this group is isomorphic to \mathbb{R}^* .

Proof. Consider the map $\varphi : \mathbb{R} \setminus \{-1\} \to \mathbb{R}^*$ defined as $\varphi(x) = 1 + x$.

This map is surjective because if $b \in \mathbb{R}^*$, then $b - 1 \in \mathbb{R} \setminus \{-1\}$, and $\varphi(b - 1) = 1 + b - 1 = b$. This map is also injective, for if $\varphi(x) = \varphi(y)$, then 1 + x = 1 + y, so x = y. As φ is both surjective and injective, it is bijective.

To show φ is an isomorphism, we now need only to verify $\varphi(x * y) = x \cdot y$ for each $x, y \in \mathbb{R} \setminus \{-1\}$. Thus take $x, y \in \mathbb{R} \setminus \{-1\}$ and observe

$$\varphi(x*x) = \varphi(x+y+xy) = 1+x+y+xy = (1+x)(1+y) = \varphi(x)\varphi(y).$$

Therefore $\varphi(x * y) = \varphi(x) \cdot \varphi(y)$, so φ is an isomorphism.

Note: The map $\varphi : \mathbb{R} \setminus \{-1\} \to \mathbb{R}^*$ defined as $\varphi(x) = \frac{1}{1+x}$ also works.

- 16. Find the order of each of the following elements.
 - (b) (6, 15, 4) in $\mathbb{Z}_{30} \times \mathbb{Z}_{45} \times \mathbb{Z}_{24}$ has order lcm(5, 3, 6) = 30. (d) (8, 8, 8) in $\mathbb{Z}_{10} \times \mathbb{Z}_{24} \times \mathbb{Z}_{80}$ has order lcm(5, 3, 10) = 30.
- **22.** Let G be a group of order 20. If G has subgroups H and K of orders 4 and 5, respectively, such that hk = kh for all $h \in H$ and $k \in K$, prove that G is the internal direct product of H and K.

Proof. According to the definition of the internal direct product, we must check three criteria:

- $G = HK = \{hk : h \in H, k \in K\}$
- $H \cap K = \{e\}$
- hk = kh for all $h \in H$ and $k \in K$

The third criteria already holds. To prove that the second holds, take an arbitrary element $a \in H \cap K$. Then $a \in H$ and $a \in K$. Thus $\langle a \rangle \subseteq H$ and $\langle a \rangle \subseteq K$. By Lagrange's Theorem, $|\langle a \rangle|$ divides |H| = 5, and likewise $|\langle a \rangle|$ divides |H| = 4. Consequently $|\langle a \rangle| = 1$, that is, $\langle a \rangle = \{e\}$. It follows that a = e. We have now shown that any element $a \in H \cap K$ has to be a = e, so $H \cap K = \{e\}$.

Finally, we need to show G = HK. Consider the map $\varphi : H \times K \to G$ defined as $\varphi((h, k)) = hk$. We claim that this map is injective. To see this, suppose $\varphi((h, k)) = \varphi((h', k'))$, so hk = h'k'. From this, $h'^{-1}h = k'k^{-1}$. By closure in a subgroup, the expression on the left is in H and the expression on the right is in K. But since $H \cap K = \{e\}$, it must be that $h'^{-1}h = k'k^{-1} = e$. This yields h = h' and k = k', so (h, k) = (h', k'), which proves that φ is injective.

Now we have an injective map $\varphi : H \times K \to G$. But since $|H \times K| = 20 = |G|$, this map must also be surjective. Since it is surjective, and $g \in G$ can be written as $g = \varphi(h, k) = hk$ for some $(h, k) \in H \times K$. Consequently, G = HK. We have now verified all three criteria.

50. Prove that $A \times B$ is abelian if and only if both A and B are abelian.

Proof. Suppose $A \times B$ is abelian. Take any $x, y \in A$ and $z, w \in B$. Since $A \times B$ is abelian, we have

$$(xy, zw) = (x, z)(y, w)$$

= $(y, w)(x, z) = (yx, wz)$

So (xy, zw) = (yx, wz), which means xy = yx and zw = wz. Hence both A and B are abelian. Conversely suppose both A and B are abelian. Take any two $(x, z), (y, w) \in A \times B$. Since xy = yx and zw = wz, we have (x, z)(y, w) = (xy, zw) = (yx, wz) = (y, w)(x, z). Thus $A \times B$ is abelian.