Chapter 10: Homomorphisms and Factor Groups

- 1. For each of the following groups G, determine whether H is a normal subgroup of G. If H is normal, write out a Cayley table for the factor group G/H.
 - (a) $G = S_4$ and $H = A_4$.

Here H consists of all of the even permutations in S_4 . Now, if σ is an even permutation, then σH consists of the even permutations in H multiplied on the left by the even permutation σ , so σH is a set of even permutations. Hence $\sigma H \subseteq H$, so $\sigma H = H$ by Lemma 6.1. For the same reason $H\sigma = H$. Therefore $\sigma H = H\sigma = H$ when σ is even.

On the other hand, if σ is an odd permutation, then σH consists of the even permutations in H multiplied on the left by the odd permutation σ , so it follows that σH is the set of odd permutations. For the same reason, $H\sigma$ is the set of odd permutations in S_4 , so we have $\sigma H = H\sigma$.

The above two paragraphs establish that $\sigma H = H\sigma$ for every $\sigma \in S_4$, so H is normal.

The Cayley table for the factor group is as follows.

	(1)H	(12)H
(1)H	(1)H	(12)H
(12)H	(12)H	(1)H

(b) $G = A_5$ and $H = \{(1), (123), (132)\}.$

In this example, H is **not** a normal subgroup of G. To see this, consider the permutation $(124) \in A_5$. We will show that $(124)H \neq H(124)$.

First note $(124)H = \{(124)(1), (124)(123), (124)(132)\} = \{(124), (14)(32), (134)\}.$ Next note $H(124) = \{(1)(124), (123)(124), (132)(124)\} = \{(124), (13)(24), (242)\}.$

Therefore we have established $(124)H \neq H(124)$, so H is not normal.

(e) $G = \mathbb{Z}$ and $H = 5\mathbb{Z}$.

Since G is abelian, it automatically follows that n + H = H + n for any $n \in G$, so H is normal.

The cosets are as follows.

 $\begin{array}{l} 0+H=\{\ldots,-10,-5,0,5,10,15,\ldots\}\\ 1+H=\{\ldots,-9,-4,1,6,11,16,\ldots\}\\ 2+H=\{\ldots,-8,-3,2,7,12,17,\ldots\}\\ 3+H=\{\ldots,-7,-2,3,8,13,18,\ldots\}\\ 4+H=\{\ldots,-6-1,4,9,14,19,\ldots\}\end{array}$

The Cayley table for the factor group is as follows.

+	0 + H	1 + H	2 + H	3 + H	4 + H
0 + H	0 + H	1 + H	2 + H	3 + H	4 + H
1 + H	1 + H	2 + H	3 + H	4 + H	0 + H
2 + H	2 + H	3 + H	4 + H	0 + H	1 + H
3 + H	3 + H	4 + H	0 + H	1 + H	2 + H
4 + H	4 + H	0 + H	1 + H	2 + H	3 + H