
Test Two Advanced Graph Theory April 18, 2019
MATH 656

Name: R. Hammack Score:

Directions: Choose any four questions. Each of your four chosen questions is 25 points, for a total of 100 points.
If you do more than four questions, please clearly indicate which of the four you want to contribute toward your 100 points.

1. Prove that if G is a simple graph and |E(G)| > α′(G)∆(G), then G is Class 2.
(Recall that α(G′) is the edge independence number, that is, the size of a maximum matching in G.)

Proof: (Contrapositive) Suppose that G is not Class 2. Thus G is Class 1, meaning χ′(G) = ∆(G). Select a proper
edge coloring of G with ∆(G) colors. Then each vertex of G is incident with exactly one edge of each color, so each color
class is a perfect matching. Thus α′(G) equals the number of edges in each of the χ′(G) color classes. Consequently
|E(G)| = α′(G)χ′(G) = α′(G)∆(G). Thus |E(G)| > α′(G)∆(G) is untrue.

2. Let G be a simple graph without isolated vertices. Prove that if the line graph L(G) is connected and regular, then
either G is regular, or G is a bipartite graph in which vertices in the same partite set have the same degree.

Proof: Let L(G) be regular of degree ∆, and connected. Consider a typical path P = e1, e2, e3, . . . , en in L(G), where
vertices ei and ei+1 are adjacent in L(G) for 1 ≤ i < n. As L(G) is regular, we have dL(G)(ei) = ∆ for each ei. In
G, the ei are edges, where ei is incident to ei+1 for 1 ≤ i < n. We can write e1 = x0x1, e2 = x1x2, e3 = x2x3, . . . ,
en = xn−1xn. Each ei is incident with dL(G)(ei) = ∆ other edges of G, which means

dG(xi−1) + dG(xi) = ∆ + 2 for each edge ei = xi−1xi.

Say dG(x0) = d. Using this and the above equation,

• dG(x0) = d,

• dG(x1) = ∆ + 2− d
• dG(x2) = d

• dG(x3) = ∆ + 2− d
• dG(x4) = d

• dG(x5) = ∆ + 2− d
• dG(x6) = d, etc.

Because L(G) is connected, we can reach any vertex en ∈ V (L(G)) by such a path P . Hence we can reach any vertex
xn of G as an endpoint of the final edge en.

Case 1: Suppose d = (∆ + 2)/2 (so that d = ∆ + 2− d). Then every vertex of G that we can reach from x0 has degree
d, which is to say that G is regular.

Case 2: Suppose d 6= (∆ + 2)/2 (so that d 6= ∆ + 2 − d). Then any vertex of G either has degree d or degree
∆ + 2 − d. Let X be the set of vertices of degree d and let Y be the set of vertices of degree ∆ + 2 − d. Then
V (G) = X ∪ Y and X ∩ Y = ∅. An arbitrary edge e = xy of G cannot have both endpoints in X because that would
mean dL(G)(e) = 2d − 2 = ∆, violating d 6= (∆ + 2)/2. Nor can e have both endpoints in Y , for that would mean
dL(G)(e) = 2(∆ − d + 2) − 2 = ∆, again violating violating d 6= (∆ + 2)/2. Thus every edge of G joins X to Y , and
hence G is bipartite, with partite sets X and Y . Moreover all vertices of one partite set have the same degree, and all
vertices of the other partite set have the same degree, as desired.



3. Let D be a digraph (loops allowed) such that d+D(v) ≤ d and d−D(v) ≤ d for all v ∈ V (G). Prove that E(D) can be
colored using at most d colors, so that the edges entering each vertex have distinct colors and the edges exiting each
vertex have distinct colors.

Proof: Let D be as stated. From D we are going to make a graph GD with twice as many vertices as D. For each
vertex x of D, let G have two vertices x− and x+. That is, V (GD) = {x−, x+ | x ∈ V (G)}. Also put

E(GD) = {x−y+ | xy ∈ E(D)}.

In words, for any arc xy from x to y in the digraph D, there is an edge joining x− to y+ in GD. Note that GD is
uniquely determined by D, and conversely D can be unambiguously reconstructed from GD.

x+1 x+2 x+3 x+4 x+5

x−1 x−2 x−3 x−4 x−5

x1 x2 x3 x4 x5
D

GD

Notice thatGD is a bipartite graph with partite sets {x− | x ∈ V (G)} and {x+ | x ∈ V (G)}. Moreover d+D(x) = dGD
(x+)

and d−D(x) = dGD
(x−). Thus GD is a bipartite graph with ∆(G) ≤ d. König’s theorem (Theorem 7.1.7 in West) applies

and gives χ′(GD) = ∆(G) ≤ d. Give GD a proper edge coloring with at most d colors. Now color the arcs of D by
giving each arc xy ∈ E(D) the exact same color of x−y+ in G.

Then for any x ∈ V (D) the arcs xy exiting x get the same colors as the edges x−y+ of GD that are incident with x−.
Consequently the edges exiting x get distinct colors, and no more than d colors are used. Also for any x ∈ V (D) the
arcs yx entering x get the same colors as the edges y−x+ of GD that are incident with x+. Consequently the edges
entering x get distinct colors, and no more than d colors are used.

4. Prove that if G is Eulerian, then L(G) is Eulerian.

Proof: Suppose that G is Eulerian, so it is connected and every vertex has even degree. We need to show that the
same is true for L(G). To begin, consider an arbitrary edge e = xy of G, that is, and arbitrary vertex of L(G).

G
yx

e

Since x and y have even degree, e is incident with d(x) − 1 vertices at x, and d(y) − 1 vertices at y. Therefore e is
incident with d(x) − 1 + d(y) − 1 = d(x) + d(y) − 2 other edges of G, and this is the degree of the vertex e in L(G).
Because d(x) and d(y) are even, d(x) + d(y)− 2 is even, and thus any vertex e of L(G) has even degree.

Now we must show that L(G) is connected. For any two edges e, f ∈ E(G) choose a path in G whose edges are
e = e0, e1, e2, . . . , en = f that begins with e and ends with f (possible because G is connected). Then by definition of
L(G), the sequence of vertices e = e0, e1, e2, . . . , en = f is a path joining e to f . Thus L(G) is connected.

Ge1 e2 e3 e4 e5e f

Because L(G) is connected and all its vertices have even degree, it is Eulerian.



5. Prove that every maximal plane graph other than K4 is 3-face-colorable.

Proof: First note that K4 cannot be 3-face-colored because each of its faces shares boundaries with all of the remaining
four faces. Therefore whichever color we give a particular face, the three faces that share a boundary with it must be
given three new and distinct colors.

Suppose G is a maximal plane graph that is not K4. In particular G is a plane triangularization. Regard the dual
graph G∗ as the planar graph formed by putting a vertex inside each triangular face of G and connecting two vertices
x, y of G∗ across across an edge e of G whenever e is the common boundary of the two faces of G that x and y are in.

Notice that K∗3 = K3, and in fact G∗ = K3 if and only if G = K3, because (G∗)∗ = G.

G∗ = K4

G = K4

Further note that in any event, G∗ is 3-regular because every face of G is a triangle. Moreover, if we properly color the
vertices of G∗ with χ(G∗) colors, then that coloring induces a proper face-coloring of G if we give each face the color
of the vertex of G∗ that it contains. Therefore G can be properly χ(G∗)-face-colored.

Now, G∗ is 3-regular, so it is certainly not an odd cycle. And if it were a complete graph then it could only be K4,
and we have expressly assumed that this is not the case. Thus Brook’s theorem applies to G∗. (Recall that Brook’s
theorem states that χ(H) ≤ ∆(H) unless H is an odd cycle or a complete graph.) Applying Brook’s theorem, we get
χ(G∗) ≤ ∆(G∗) = 3. Therefore G∗ can be properly 3-vertex-colored, so G can be properly 3-face-colored.

6. Prove that if G is a plane triangularization, then the planar dual G∗ has a 2-factor (i.e. a 2-regular spanning subgraph).
(You may assume the Four Color Theorem.)

Proof: Suppose G is a plane triangularization. By the Four Color Theorem, G has a proper vertex coloring with four
colors. Form the dual G∗ by putting a vertex in each face of G and connecting any pair of vertices that are in faces
that share an edge. Then each face of G∗ contains exactly one vertex of G. Color each face with the same color as the
vertex contained in that face. This results in a 4-face-coloring of G∗. Thus G∗ is 4-face colorable.

Next we observe that because each face of G is a triangle, the dual G∗ is 3-regular.

Moreover, observe that G∗ is 2-edge-connected. Indeed, if it had a bridge e, then e would have the same face on either
side of it. Say that face contains the vertex x of G∗. Then (G∗)∗ = G has a loop at x, and this contradicts the fact
that G is a plane triangularization.

X Y
e
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x

In summary, G∗ is a simple 3-regular 2-connected 4-face-colorable plane graph. By Tait’s theorem, G∗ is 3-edge
colorable. Give G∗ a proper edge coloring with 3 colors. Notice that each vertex of G∗ is incident with edges of all
three colors. Pick two of the colors, say red and green, and let H be the subgraph of G∗ induced on the red and green
edges. Then each vertex of H has degree 2, because it is incident with one red and one green edge. Thus H is 2-regular.
Further H is spanning because every vertex of G∗ is incident with a red and green edge. Consequently H is a 2-factor
of G∗.



7. Given positive integers p, q, let G be the grid with p vertices on the horizontal side and q vertices on the vertical side.

Prove that G is Hamiltonian if and only if at least one of p and q is even.

Gq vertices


︸ ︷︷ ︸

p vertices

Proof: If p is even, then we can achieve a Hamiltonian cycle using the pattern on the left. If q is even, then we can
achieve a Hamiltonian cycle using the pattern on the right.

Conversely suppose that it is not the case that at least one of p and q is even, that is, suppose that they are both odd.
We need to prove that G has no Hamiltonian cycle. Suppose to the contrary that G does have a Hamiltonian cycle H.
As usual, let f ′i be the number of length-i faces inside H, and let f ′′i be the number of length-i faces outside H. Every
bounded face in the plane embedding has length 4, and the unbounded face has length 2(p−1) + 2(q−1) = 2p+ 2q−4.
Grinberg’s theorem says

pq∑
i=3

(i− 2)(f ′i − f ′′i ) = 0,

and this reduces to

(4− 2)(f ′4 − f ′′4 ) + (2p+ 2q − 4− 2)(f ′2p+2q−4 − f ′2p+2q−4) = 0

2(f ′4 − f ′′4 ) + (2p+ 2q − 6)(0− 1) = 0

2(f ′4 − f ′′4 ) = 2p+ 2q − 6

f ′4 − f ′′4 = p+ q − 3. (1)

Now, f ′4 + f ′′4 equals the total number of square faces of G, which is length × width = (p − 1)(q − 1). Adding
f ′4 + f ′′4 = (p− 1)(q − 1) to both sides of (??) yields

2f ′4 = (p− 1)(q − 1) + p+ q − 3

= pq − p− q + 1 + p+ q − 3

= pq − 2

Because p and q are both odd, the expression pq − 2 is odd, which contradicts 2f ′′4 = pq − 2. From this contradiction
we conclude that G is not Hamiltonian.



8. Suppose that M = (E, I) is a matroid. Prove that if r(X) = r(X ∩ Y ), then r(X ∪ Y ) = r(Y ).
Does the converse necessarily hold?

(You are allowed to use the sub-modularity property of matroids: r(X∩Y )+r(X∪Y ) ≤ r(X)+r(Y ) for all X,Y ⊆ E.)

Proof: Suppose r(X) = r(X ∩ Y ). Then this combined with the sub-modularity property yields r(X ∪ Y ) ≤ r(Y ).
But because Y ⊆ X ∪ Y , we have r(Y ) ≤ r(X ∪ Y ). As r(X ∪ Y ) ≤ r(Y ) and r(Y ) ≤ r(X ∪ Y ), it follows that
r(X ∪ Y ) = r(Y ).

The converse does not necessarily hold. Let X and Y be two distinct bases of M . Then r(X ∪ Y ) = r(E) = r(Y ).
However X ∩ Y consists of fewer than |X| independent elements, so r(X) > r(X ∩ Y ), that is, r(X) 6= r(X ∩ Y )

9. Prove that in a matroid M = (E, I), a set X ⊆ E is a hypobase if and only if it is a hyperplane.
(Recall: a hypobase is a maximal subset containing no base. A hyperplane is a maximal proper subspace.)
You can use the fact that σ(σ(X)) = σ(X) in a matroid.

Proof: Suppose X ⊆ E is a hypobase of M , so X is a maximal subset containing no base. Since X contains no
base, we know that σ(X) 6= E. From this σ(σ(X)) = σ(X) 6= E, so σ(X) contains no base (otherwise we would have
σ(σ(X)) = E. Because X is a maximal set containing no base and X is contained in the set σ(X) containing no base,
it follows that X = σ(X). This means that X is a subspace. In particular X is a maximal subspace containing no base.
Thus X is a maximal proper subspace, in other words X is a hyperplane.

Conversely, suppose X is a hyperplane, that is, X is a maximal proper subspace. (In particular σ(X) = X because
X is a subspace.) Then of course X is a proper subset of E and it contains no base because otherwise we would
have X = σ(X) = E. We just need to show that X is a maximal subset of E containing no base. Thus suppose
X ⊆ Y ⊆ E and Y contains no base. (We need to show X = Y .) Then σ(X) ⊆ σ(Y ) ⊆ σ(E) which reduces to
X ⊆ σ(Y ) ⊆ E. But σ(Y ) 6= E because Y contains no base. Consequently σ(σ(Y )) 6= E, which means σ(Y ) contains
no base. Now from X ⊆ σ(Y ) and the fact that X is a maximal set containing no base, we get X = σ(Y ). Now we
have X ⊆ Y ⊆ σ(Y ) = X, so X = Y . We have now shown that X is a maximal subset of E containing no base so, X
is a hypobase.


