Test Two Advanced Graph Theory April 18, 2019
MATH 656
Name: R. Hammack Score:

Directions: Choose any four questions. Each of your four chosen questions is 25 points, for a total of 100 points.
If you do more than four questions, please clearly indicate which of the four you want to contribute toward your 100 points.

1. Prove that if G is a simple graph and |E(G)| > o/(G)A(G), then G is Class 2.
(Recall that «(G’) is the edge independence number, that is, the size of a maximum matching in G.)

Proof: (Contrapositive) Suppose that G is not Class 2. Thus G is Class 1, meaning x'(G) = A(G). Select a proper
edge coloring of G with A(G) colors. Then each vertex of G is incident with exactly one edge of each color, so each color
class is a perfect matching. Thus o/(G) equals the number of edges in each of the x/(G) color classes. Consequently
|E(G)] = ' (G)X'(G) = &/(G)A(G). Thus |E(G)| > '(G)A(G) is untrue. |

2. Let G be a simple graph without isolated vertices. Prove that if the line graph L(G) is connected and regular, then
either G is regular, or G is a bipartite graph in which vertices in the same partite set have the same degree.

Proof: Let L(G) be regular of degree A, and connected. Consider a typical path P = ey, eq, €3, ..., e, in L(G), where
vertices e; and e;y; are adjacent in L(G) for 1 < i < n. As L(G) is regular, we have dg)(e;) = A for each e;. In
G, the e; are edges, where e; is incident to e;11 for 1 < i < n. We can write e; = zgz1, €2 = 122, €3 = o3, ...,
€n = Tn_1Ty. Each e; is incident with dp,(g)(e;) = A other edges of G, which means

de(xim1) +de(z) =A+2 for each edge e; = x;_17;.

Say dg(xo) = d. Using this and the above equation,

e dg(zg) =d,

o do(z))=A+2—d
o dg(v2) =d

o do(x3) =A+2—d
o dg(xy)=d

o dg(zs) =A+2—d
o dg(xg) =d, etc.

Because L(G) is connected, we can reach any vertex e, € V(L(G)) by such a path P. Hence we can reach any vertex
xp, of G as an endpoint of the final edge e,.

Case 1: Suppose d = (A +2)/2 (so that d = A+ 2 —d). Then every vertex of G that we can reach from z( has degree
d, which is to say that G is regular.

Case 2: Suppose d # (A + 2)/2 (so that d # A+ 2 — d). Then any vertex of G either has degree d or degree
A+ 2 —d. Let X be the set of vertices of degree d and let Y be the set of vertices of degree A + 2 — d. Then
V(G)=XUY and X NY = (. An arbitrary edge e = zy of G cannot have both endpoints in X because that would
mean dp(g)(e) = 2d — 2 = A, violating d # (A +2)/2. Nor can e have both endpoints in Y, for that would mean
dra)(e) = 2(A —d+2) —2 = A, again violating violating d # (A +2)/2. Thus every edge of G joins X to Y, and
hence G is bipartite, with partite sets X and Y. Moreover all vertices of one partite set have the same degree, and all
vertices of the other partite set have the same degree, as desired. |



3. Let D be a digraph (loops allowed) such that df(v) < d and d(v) < d for all v € V(G). Prove that E(D) can be
colored using at most d colors, so that the edges entering each vertex have distinct colors and the edges exiting each
vertex have distinct colors.

Proof: Let D be as stated. From D we are going to make a graph Gp with twice as many vertices as D. For each
vertex x of D, let G have two vertices x~ and . That is, V(Gp) = {z~,z" | x € V(G)}. Also put

E(Gp)={x"y" |y € E(D)}.

In words, for any arc zy from z to y in the digraph D, there is an edge joining 2~ to ¥ in Gp. Note that Gp is
uniquely determined by D, and conversely D can be unambiguously reconstructed from Gp.
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Notice that G is a bipartite graph with partite sets {z~ | z € V(G)} and {z* | 2 € V(G)}. Moreover d},(z) = dg,, (z*)
and d(z) = dg,(x~). Thus Gp is a bipartite graph with A(G) < d. Ko6nig’s theorem (Theorem 7.1.7 in West) applies
and gives x'(Gp) = A(G) < d. Give Gp a proper edge coloring with at most d colors. Now color the arcs of D by
giving each arc zy € E(D) the exact same color of x7y* in G.

Then for any = € V(D) the arcs xy exiting x get the same colors as the edges 7 y* of Gp that are incident with z~.
Consequently the edges exiting x get distinct colors, and no more than d colors are used. Also for any = € V(D) the
arcs yx entering x get the same colors as the edges y~x% of Gp that are incident with z+. Consequently the edges
entering x get distinct colors, and no more than d colors are used. |

4. Prove that if G is Eulerian, then L(G) is Eulerian.

Proof: Suppose that G is Eulerian, so it is connected and every vertex has even degree. We need to show that the
same is true for L(G). To begin, consider an arbitrary edge e = zy of G, that is, and arbitrary vertex of L(G).

ek
Since z and y have even degree, e is incident with d(z) — 1 vertices at x, and d(y) — 1 vertices at y. Therefore e is

incident with d(x) — 14 d(y) — 1 = d(x) + d(y) — 2 other edges of G, and this is the degree of the vertex e in L(G).
Because d(z) and d(y) are even, d(x) + d(y) — 2 is even, and thus any vertex e of L(G) has even degree.

Now we must show that L(G) is connected. For any two edges e, f € E(G) choose a path in G whose edges are

e =ep,eq,63,...,6, = [ that begins with e and ends with f (possible because G is connected). Then by definition of
L(G), the sequence of vertices e = eg, e1,€a,...,e, = f is a path joining e to f. Thus L(G) is connected.
e/ e\l e/ eN\_ e/ es f G

Because L(G) is connected and all its vertices have even degree, it is Eulerian. |



5. Prove that every maximal plane graph other than K, is 3-face-colorable.

Proof: First note that K4 cannot be 3-face-colored because each of its faces shares boundaries with all of the remaining
four faces. Therefore whichever color we give a particular face, the three faces that share a boundary with it must be
given three new and distinct colors.

Suppose G is a maximal plane graph that is not K. In particular G is a plane triangularization. Regard the dual
graph G* as the planar graph formed by putting a vertex inside each triangular face of G and connecting two vertices
x,y of G* across across an edge e of G whenever e is the common boundary of the two faces of G that x and y are in.

Notice that Kj = K3, and in fact G* = K3 if and only if G = K3, because (G*)* = G.
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Further note that in any event, G* is 3-regular because every face of G is a triangle. Moreover, if we properly color the
vertices of G* with x(G*) colors, then that coloring induces a proper face-coloring of G if we give each face the color
of the vertex of G* that it contains. Therefore G can be properly x(G*)-face-colored.

Now, G* is 3-regular, so it is certainly not an odd cycle. And if it were a complete graph then it could only be Ky,
and we have expressly assumed that this is not the case. Thus Brook’s theorem applies to G*. (Recall that Brook’s
theorem states that x(H) < A(H) unless H is an odd cycle or a complete graph.) Applying Brook’s theorem, we get
X(G*) < A(G*) = 3. Therefore G* can be properly 3-vertex-colored, so G' can be properly 3-face-colored. |

6. Prove that if G is a plane triangularization, then the planar dual G* has a 2-factor (i.e. a 2-regular spanning subgraph).
(You may assume the Four Color Theorem.)

Proof: Suppose G is a plane triangularization. By the Four Color Theorem, G has a proper vertex coloring with four
colors. Form the dual G* by putting a vertex in each face of G and connecting any pair of vertices that are in faces
that share an edge. Then each face of G* contains exactly one vertex of G. Color each face with the same color as the
vertex contained in that face. This results in a 4-face-coloring of G*. Thus G* is 4-face colorable.

Next we observe that because each face of G is a triangle, the dual G* is 3-regular.

Moreover, observe that G* is 2-edge-connected. Indeed, if it had a bridge e, then e would have the same face on either
side of it. Say that face contains the vertex x of G*. Then (G*)* = G has a loop at z, and this contradicts the fact
that G is a plane triangularization.
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In summary, G* is a simple 3-regular 2-connected 4-face-colorable plane graph. By Tait’s theorem, G* is 3-edge
colorable. Give G™* a proper edge coloring with 3 colors. Notice that each vertex of G* is incident with edges of all
three colors. Pick two of the colors, say red and green, and let H be the subgraph of G* induced on the red and green
edges. Then each vertex of H has degree 2, because it is incident with one red and one green edge. Thus H is 2-regular.
Further H is spanning because every vertex of G* is incident with a red and green edge. Consequently H is a 2-factor
of G*. |



7. Given positive integers p, ¢, let G be the grid with p vertices on the horizontal side and g vertices on the vertical side.
Prove that G is Hamiltonian if and only if at least one of p and ¢ is even.

q vertices

p vertices

Proof: If p is even, then we can achieve a Hamiltonian cycle using the pattern on the left. If ¢ is even, then we can
achieve a Hamiltonian cycle using the pattern on the right.
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Conversely suppose that it is not the case that at least one of p and ¢ is even, that is, suppose that they are both odd.
We need to prove that G has no Hamiltonian cycle. Suppose to the contrary that G does have a Hamiltonian cycle H.
As usual, let f! be the number of length-i faces inside H, and let f!’ be the number of length-i faces outside H. Every
bounded face in the plane embedding has length 4, and the unbounded face has length 2(p —1)+2(q— 1) = 2p+ 2q — 4.

Grinberg’s theorem says
pq

D =2~ f) =0

=3

and this reduces to

(4=2)(f1— )+ 2p+2¢—4—2)(fopr04-4 — foproga) = O
20fs—fi)+(2p+2¢—-6)(0—-1) = 0
1)

2(f4 2p+2q—6
ﬁ 4 p+aq-3. (1)

Now, f; + fi equals the total number of square faces of G, which is length x width = (p — 1)(¢ — 1). Adding
fi+ fl=(@—-1)(g—1) to both sides of (??) yields

2fy = (P-1@-1+p+q-3
= pg—p—q+l+tptqg—3
= pg—2

Because p and ¢ are both odd, the expression pg — 2 is odd, which contradicts 2f; = pg — 2. From this contradiction
we conclude that G is not Hamiltonian.



8. Suppose that M = (E,I) is a matroid. Prove that if 7(X) =7(X NY), then r(X UY) =r(Y).
Does the converse necessarily hold?

(You are allowed to use the sub-modularity property of matroids: #(XNY)+r(XUY) <r(X)+r(Y) forall X, Y C E.)

Proof: Suppose r(X) = (X NY). Then this combined with the sub-modularity property yields r(X UY) < r(Y).
But because Y € X UY, we have (V) < 7(XUY). Asr(XUY) < r(Y) and r(Y) < r(X UY), it follows that
r(XUY)=rY).

The converse does not necessarily hold. Let X and Y be two distinct bases of M. Then r(X UY) = r(E) = r(Y).
However X NY consists of fewer than |X| independent elements, so r(X) > r(X NY), that is, r(X) # (X NY)

9. Prove that in a matroid M = (E,I), a set X C E is a hypobase if and only if it is a hyperplane.
(Recall: a hypobase is a maximal subset containing no base. A hyperplane is a maximal proper subspace.)
You can use the fact that o(c(X)) = o¢(X) in a matroid.

Proof: Suppose X C E is a hypobase of M, so X is a maximal subset containing no base. Since X contains no
base, we know that o(X) # E. From this o(c(X)) = 0(X) # E, so 0(X) contains no base (otherwise we would have
o(0(X)) = E. Because X is a maximal set containing no base and X is contained in the set o(X) containing no base,
it follows that X = o(X). This means that X is a subspace. In particular X is a maximal subspace containing no base.
Thus X is a maximal proper subspace, in other words X is a hyperplane.

Conversely, suppose X is a hyperplane, that is, X is a maximal proper subspace. (In particular o(X) = X because
X is a subspace.) Then of course X is a proper subset of E and it contains no base because otherwise we would
have X = o(X) = E. We just need to show that X is a maximal subset of F containing no base. Thus suppose
X CY C F and Y contains no base. (We need to show X = Y.) Then o(X) C o(Y) C o(E) which reduces to
X Co(Y) CE. But 0(Y) # E because Y contains no base. Consequently o(c(Y)) # E, which means ¢(Y") contains
no base. Now from X C ¢(Y) and the fact that X is a maximal set containing no base, we get X = o(Y). Now we
have X CY Co(Y) = X, s0 X =Y. We have now shown that X is a maximal subset of E containing no base so, X
is a hypobase. |



