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a b s t r a c t

The direct product of graphs obeys a limited cancellation property. Lovász proved that if
C has an odd cycle then A × C ∼= B × C if and only if A ∼= B, but cancellation can fail if
C is bipartite. This note investigates the ways cancellation can fail. Given a graph A and a
bipartite graph C , we classify the graphs B for which A× C ∼= B× C . Further, we give exact
conditions on A that guarantee A × C ∼= B × C implies A ∼= B. Combined with Lovász’s
result, this completely characterizes the situations in which cancellation holds or fails.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Recently there has been a revival of interest in questions involving cancellation properties of various graph products. The
articles [1–3,5] investigate sufficient conditions under which A ? C ∼= B ? C implies A ∼= B, where A, B and C are graphs, and
? stands for either the Cartesian product, the strong product, or the direct product. In this contribution we give a complete
solution to the cancellation problem for the direct product.
For us, a graph A is a symmetric binary relation E(A) on a finite set V (A) of vertices. We call elements of E(A) edges and

denote them as aa′, where a, a′ ∈ V (A); reflexive elements aa are called loops. The direct product of two graphs A and B is the
graph A×Bwhose vertex set is the Cartesian product V (A)×V (B) andwhose edges are the pairs (a, b)(a′, b′)with aa′ ∈ E(A)
and bb′ ∈ E(B). (See [4] for a standard reference.) A homomorphism from graph A to graph B is a map ϕ : V (A)→ V (B)with
the property that aa′ ∈ E(A) implies ϕ(a)ϕ(a′) ∈ E(B). We are indebted to Lovász for the following theorems.

Theorem 1 (Lovász [6], Theorem 6). Let A, B, C and D be graphs. If A× C ∼= B× C and there is a homomorphism from D to C,
then A× D ∼= B× D.

Theorem 2 (Lovász [6], Theorem 7). Let A, B and C be graphs. If A × C ∼= B × C, then there is an isomorphism from A × C to
B× C of the form (a, c) 7→ (ψ(a, c), c) for some homomorphism ψ : A× C → B.

Theorem 3 (Lovász [6], Theorem 9). Let A, B and C be graphs. If C has an odd cycle, then A× C ∼= B× C if and only if A ∼= B.

Theorem 3 can be interpreted as a partial cancellation law, as it gives sufficient conditions under which the common
factor C can be ‘‘cancelled’’ from the expression A × C ∼= B × C . The theorem is quite strong in the sense that cancellation
can always fail if C is bipartite. Indeed, as Lovász observed, if C fails to have an odd cycle, then there exist graphs A and B for
which A× C ∼= B× C but A � B. Fig. 1(a) and (b) show simple examples, where, in each case, C is the complete graph K2. In
Fig. 1(a), A is K3 and B is a path of length 2 with loops at each end, while A× C and B× C are both isomorphic to the 6-cycle.
In Fig. 1(b), A× C and B× C both consist of two disjoint 4-cycles, but A � B.
However, Theorem 3 does not completely resolve the question of when C can be cancelled from A×C ∼= B×C . Although

it does imply that cancellation can fail if and only if C is bipartite, it does not address what properties of A (or B) might
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Fig. 1. Failure of cancellation.

guarantee that cancellation holds. For example, if A consists of a single vertex with a loop, then surely A×C ∼= B×C implies
A ∼= B, whether or not C is bipartite. We might reasonably ask what other graphs A have this property.
The present note answers that question. Given a graph A and a bipartite graph C , we classify those graphs B for which

A× C ∼= B× C . This leads to exact conditions on Awhich guarantee that A× C ∼= B× C implies A ∼= B.
Our methods involve two new ideas. Section 2 introduces the notion of an anti-automorphism of a graph, and Section 3

describes a ‘‘factorial’’ operation on graphs. We combine these constructions in Section 4 to answer our main questions.
We note in passing that a standard (but difficult) result states that the class of connected non-trivial non-bipartite graphs

obeys unique factorization with respect to the direct product [4,7]. Given this, it is immediate that A × C ∼= B × C if and
only if A ∼= B when all factors are connected, non-bipartite and non-trivial. However, Theorem 3 (and our main theorems)
are more general in the sense that connectivity is not assumed and A and B are not required to have odd cycles.

2. Anti-automorphisms

An anti-automorphism of a graph A is a bijection µ : V (A) → V (A) with the property that aa′ ∈ E(A) if and only if
µ(a)µ−1(a′) ∈ E(A) for all pairs a, a′ ∈ V (A). The set of all anti-automorphisms of A is denoted Ant(A).
In general, the set Ant(A) is not a group, though it contains the identity and is closed with respect to taking inverses.

Notice that any automorphism of order 2 is an anti-automorphism. The following construction will be of key importance in
this article.
Given an anti-automorphism µ of a graph A, we define a graph Aµ as V (Aµ) = V (A) and E(Aµ) = {aµ(a′) : aa′ ∈ E(A)}.

For example, let A = K3 and µ be a transposition of two vertices (which is an automorphism of order 2, and thus an anti-
automorphism). Then Aµ is a path of length 2 with loops at each end. Thus in Fig. 1(a), we have B = Aµ. Similarly, B = Aµ in
Fig. 1(b), where µ is reflection of A across the vertical axis.
We take care to point out that the statement aa′ ∈ E(A) ⇔ aµ(a′) ∈ E(Aµ) is true, and it follows not just from the

definition of Aµ, but also from the fact that µ is an anti-automorphism. This is summarized in the following result, which
will be used frequently and without further comment.

Proposition 4. If µ ∈ Ant(A), then aa′ ∈ E(A) if and only if aµ(a′) ∈ E(Aµ).

Proof. Certainly if aa′ ∈ E(A), then aµ(a′) ∈ E(Aµ) by definition of Aµ. Conversely, suppose aµ(a′) ∈ E(Aµ). By definition
of Aµ, this means that either aa′ ∈ E(A) or µ−1(a)µ(a′) ∈ E(A). In the second case, the fact that µ is an anti-automorphism
ensures that aa′ ∈ E(A). �

The fact that B = Aµ in Fig. 1(a) and (b) illustrates the following general principle.

Proposition 5. Let A and B be graphs. If C is a bipartite graph that has at least one edge, then A × C ∼= B × C if and only if
B ∼= Aµ for some µ ∈ Ant(A).

Proof. Suppose A×C ∼= B×C . Wewill construct an anti-automorphismµ of A for which Aµ ∼= B. Since C has an edge, there
is a homomorphism K2 → C , and therefore Theorem 1 implies A × K2 ∼= B × K2. By Theorem 2, there is an isomorphism
A× K2 → B× K2 of form (a, c) 7→ (ψ(a, c), c). Put V (K2) = {0, 1} and define maps α, β : V (A)→ V (B) as follows.

α(a) = ψ(a, 0)
β(a) = ψ(a, 1).
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Since (a, c) 7→ (ψ(a, c), c) is an isomorphism, it follows readily that α and β are bijective. We now show that the
composition α−1β is an anti-automorphism. Observe that

aa′ ∈ E(A) ⇐⇒ (a, 0)(a′, 1) ∈ E(A× K2)
⇐⇒ (ψ(a, 0), 0)(ψ(a′, 1), 1) ∈ E(B× K2)
⇐⇒ (α(a), 0)(β(a′), 1) ∈ E(B× K2)
⇐⇒ α(a)β(a′) ∈ E(B).

Thus we have

aa′ ∈ E(A)⇐⇒ α(a)β(a′) ∈ E(B), (1)

and from this it follows that also bb′ ∈ E(B)⇐⇒ β−1(b)α−1(b′) ∈ E(A). Therefore

aa′ ∈ E(A) ⇐⇒ α(a)β(a′) ∈ E(B)
⇐⇒ β−1α(a)α−1β(a′) ∈ E(A)
⇐⇒ (α−1β)−1(a) α−1β(a′) ∈ E(A).

This means α−1β ∈ Ant(A). Set µ = α−1β . Notice that α : Aµ → B is an isomorphism: By definition, any edge of Aµ has
the form aµ(a′) = aα−1β(a′) for some aa′ ∈ V (A). Taking α of both endpoints produces the edge α(a)β(a′), which by (1)
is an edge of B. On the other hand, if bb′ ∈ E(B), then α−1(b)β−1(b′) ∈ E(A), so α−1(b)µβ−1(b′) ∈ E(Aµ), which reduces to
α−1(b)α−1(b′) ∈ E(Aµ). Therefore B ∼= Aµ.
Conversely, it suffices to prove that A×C ∼= Aµ×C for any bipartite graph C andµ ∈ Ant(A). Let C0 and C1 be a bipartition

of C , and define a mapΘ : A× C → Aµ × C as

Θ(a, c) =
{
(a, c) if c ∈ C0
(µ(a), c) if c ∈ C1.

This is clearly bijective. Suppose (a, c)(a′, c ′) ∈ E(A × C). We may assume c ∈ C0 and c ′ ∈ C1. Then Θ(a, c)Θ(a′, c ′) =
(a, c)(µ(a′), c ′) ∈ E(Aµ × C). In the other direction, any edge of Aµ × C must be either of form (a, c)(µ(a′), c ′) or
(µ(a), c)(a′, c ′), where in each case c ∈ C0, c ′ ∈ C1 and aa′ ∈ E(A). In the first case, (a, c)(µ(a′), c ′) is the image under
Θ of the edge (a, c)(a′, c ′) of A × C . In the second case, (µ(a), c)(a′, c ′) is the image under Θ of (µ(a), c)(µ−1(a′), c ′),
which is an edge of A× C because µ is an anti-automorphism. �

Proposition 5 implies that the set Ant(A) in some sense parameterizes the graphs B for which A × C ∼= B × C . For any
µ ∈ Ant(A), the graph B = Aµ satisfies A×C ∼= B×C . Conversely for any Bwith A×C ∼= B×C , there is someµ ∈ Ant(A) for
which B ∼= Aµ. However, this correspondence needn’t be injective. There can exist distinct anti-automorphismsµ and λ for
which Aµ ∼= Aλ. For example, if A = K3, there are three distinct transpositions µ1, µ2 and µ3 that interchange two vertices
and fix the third. Each is an anti-automorphism, and Aµ1 ∼= Aµ2 ∼= Aµ3 is the path of length 2 with loops at each end. As a
tool for sorting out which anti-automorphism yield isomorphic graphs, we introduce the notion of a graph factorial.

3. A graph factorial

Here we define an operation on graphs that mimics the factorial of a positive integer.
The factorial of a graph A is the graph, denoted A!, whose vertices are the permutations of V (A). Permutations λ and µ

are adjacent in A! exactly when aa′ ∈ E(A) ⇔ λ(a)µ−1(a′) ∈ E(A) for all pairs a, a′ ∈ V (A). We denote an edge joining
vertices λ and µ as (λ)(µ) in order to avoid confusion with composition.
Notice that A! is well-defined as a symmetric graph since replacing a and a′ in the definition with λ−1(a) andµ(a′) yields

λ−1(a)µ(a′) ∈ E(A)⇔ aa′ ∈ E(A).
Observe that there is a loop at a vertex µ of A! if and only if µ ∈ Ant(A). Also, if µ is an automorphism of A, then

(µ)(µ−1) ∈ E(A!) but not every edge of A! necessarily has this form. As an example of a graph factorial, let K ∗p be the
complete graph on p vertices with loops at each vertex. Then any pair of permutations of V (K ∗p )must be adjacent in K

∗
p !, so

K ∗p ! ∼= K
∗

p!. Consequently

K ∗p ! ∼= K
∗

p × K
∗

p−1 × K
∗

p−2 × · · · × K
∗

3 × K
∗

2 .

Of course we expect no such nice formulas for A!when A is arbitrary.
Fig. 2(a) and (b) illustrate factorials of two graphs on the vertices {1, 2, 3}. In each case, id is the identity permutation,µi

is the transposition of the two vertices {1, 2, 3} − {i}, and ρ1 and ρ2 are clockwise rotations of 2π/3 and 4π/3.
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Fig. 2. Factorials of some graphs.

Proposition 6. For any graph A, each non-trivial component of A! either is K ∗p for some p or is a complete bipartite graph.

Proof. We first prove by induction that given any odd walk (µ1)(µ2)(µ3) . . . (µ2p) in A!, the pair (µ1)(µ2p) is an edge of A!.
This is trivial if p = 1. If p > 1, the induction hypothesis guarantees (µ3)(µ2p) ∈ E(A!), so (µ1)(µ2)(µ3)(µ2p) is a walk in
E(A!). Using the fact that the edges of this walk are edges in A!, we get

aa′ ∈ E(A) ⇐⇒ µ1(a)µ−12 (a
′) ∈ E(A)

⇐⇒ µ−13 µ1(a)µ2µ
−1
2 (a

′) ∈ E(A)

⇐⇒ µ3µ
−1
3 µ1(a)µ

−1
2p µ2µ

−1
2 (a

′) ∈ E(A)

⇐⇒ µ1(a)µ−12p (a
′) ∈ E(A).

Therefore (µ1)(µ2p) ∈ E(A!).
Now, if C is a component of A! that happens to be bipartite, then there is an odd path between any vertices α and β that

are in different partite sets of C . Thus (α)(β) ∈ E(A!), so C is a complete bipartite graph. On the other hand, if C has an odd
cycle (possibly just a loop), then there is an odd walk joining any pair of its vertices, so all pairs of vertices in C are adjacent,
so C ∼= K ∗p . �

Since anti-automorphisms of A correspond to loops in A!, and since Proposition 6 implies that any component of A!with
a loop is isomorphic to a K ∗p , it follows that Ant(A) is the set of all vertices belonging to the K

∗
p components of A!. The next

proposition shows that these components have a special significance.

Proposition 7. If λ and µ are anti-automorphisms in the same component of A!, then Aλ = Aµ.

Proof. An arbitrary edge of Aλ has form aλ(a′) where aa′ is an appropriate edge of A. Since λ and µ are adjacent in A!, it
follows that µ−1(a)λ(a′) ∈ E(A). Therefore aλ(a′) = µ(µ−1(a))λ(a′) is an edge of Aµ. Thus every edge of Aλ is also an edge
of Aµ. Reversing the roles of λ and µ, every edge of Aµ is an edge of Aλ. �

As an example of this result, consider Fig. 2(b). There id andµ1 belong to a K ∗2 and it is easy to check that A = A
id
= Aµ1 .

But despite Proposition 7, if anti-automorphisms λ and µ are in different components of A!, then this by itself says nothing
about the relationship between Aλ and Aµ. For example, in Fig. 2(a) we have A = Aid � Aµ1 ∼= Aµ2 ∼= Aµ3 . In the next
section we resolve this issue by introducing an equivalence relation on Ant(A) that is finer than the relation of belonging to
the same K ∗p in A!.

4. Cancellation theorems

Given a graph A, we define a relation ' on Ant(A) by declaring µ ' λ if µ = αλβ for some edge (possibly a loop)
(α)(β) ∈ E(A!). Observe that this is an equivalence relation. It is reflexive because µ = idµ id. It is symmetric, for given
that µ ' λ, we have µ = αλβ for (α)(β) ∈ E(A!). But then λ = α−1µβ−1, and (α−1)(β−1) ∈ E(A!), so λ ' µ. To check
transitivity, suppose µ ' λ and λ ' κ . Then µ = αλβ and λ = γ κδ for edges (α)(β) and (γ )(δ) in E(A!), so µ = λγ κ δβ .
But (αγ )(δβ) ∈ E(A!) because aa′ ∈ E(A)⇔ γ (a)δ−1(a′) ∈ E(A)⇔ αγ (a)β−1δ−1(a′) ∈ E(A)⇔ αγ (a)(δβ)−1(a′) ∈ E(A).
Therefore µ ' κ .
As an example, let us compute the equivalence classes for the case A = K3. The graphs A and A! are shown in Fig. 2(a).

Consider the equivalence class containing µ1. Since every edge (or loop) of A! has as endpoints permutations that are
both odd or both even, αµ1β must be an odd permutation for any (α)(β) ∈ E(A!). But also we have ρ1µ1ρ2 = µ2 and



Author's personal copy

2542 R.H. Hammack / Discrete Mathematics 309 (2009) 2538–2543

µ2µ1µ2 = µ3, so the class containing µ1 is the entire set {µ1, µ2, µ3} of odd permutations. It follows that the equivalence
classes of ' in this case are {id} and {µ1, µ2, µ3}. As was noted above, Aid � Aµ1 ∼= Aµ2 ∼= Aµ3 . This illustrates a general
principle.

Proposition 8. If λ,µ ∈ Ant(A), then λ ' µ if and only if Aλ ∼= Aµ.

Proof. Suppose µ ' λ, so µ = αλβ for some (α)(β) ∈ E(A!). Then µβ−1 = αλ and

aa′ ∈ E(A) ⇐⇒ α(a)β−1(a′) ∈ E(A)
⇐⇒ α(a)µβ−1(a′) ∈ E(Aµ)
⇐⇒ α(a)αλ(a′) ∈ E(Aµ).

Now, the edges of Aλ are precisely the pairs aλ(a′) for aa′ ∈ E(A), and the above equivalences show that α(a)α(λ(a′)) ∈
E(Aµ). Thus α is a homomorphism from Aλ to Aµ. Further, observe that any edge aµ(a′) of Aµ is the image under α of some
edge of Aλ: Since aµ(a′) ∈ Aµ, we have aa′ ∈ E(A), so α−1(a)β(a′) ∈ E(A), and hence α−1(a)λβ(a′) ∈ E(Aλ). Then α sends
this edge to aαλβ(a′) = aµ(a′). Therefore α : Aλ → Aµ is an isomorphism.
Conversely, let there be an isomorphism α : Aλ → Aµ. Thenµ = αλλ−1α−1µ = (α)λ(λ−1α−1µ). We just need to show

that (α)(λ−1α−1µ) ∈ E(A!), and this involves showing that aa′ ∈ E(A) if and only if α(a)µ−1αλ(a′) ∈ E(A). Now,

aa′ ∈ E(A) ⇐⇒ aλ(a′) ∈ E(Aλ)
⇐⇒ α(a)αλ(a′) ∈ E(Aµ)
⇐⇒ α(a)µ−1αλ(a′) ∈ E(A) or µ−1α(a)αλ(a′) ∈ E(A).

But if µ−1α(a)αλ(a′) ∈ E(A), the anti-automorphism property of µ implies that α(a)µ−1αλ(a′) ∈ E(A). �

For each µ ∈ Ant(A), let [µ] denote the' equivalence class containing µ. Propositions 5 and 8 imply the following.

Theorem 9. Let A be a graph and C be a bipartite graph with at least one edge. If the equivalence classes of Ant(A) are
{[µ1], [µ2], . . . , [µk]}, then the isomorphism classes of the graphs B for which A × C ∼= B × C are precisely those in
{Aµ1 , Aµ2 , . . . , Aµk}.

Let us call A a cancellation graph if A× C ∼= B× C implies A ∼= B for all graphs B and C (where C has at least one edge).
Theorem 9 implies that A is a cancellation graph if and only if Ant(A) has only one ' equivalence class. This leads to the
following.

Theorem 10. A graph A is a cancellation graph if and only if every anti-automorphism µ of A can be factored as µ = αβ where
(α)(β) ∈ E(A!).

Proof. Suppose A is a cancellation graph. Take µ ∈ Ant(A). By Proposition 5, we have A× K2 ∼= Aµ × K2. But then the fact
that A is a cancellation graph means A ∼= Aµ, which is to say Aid ∼= Aµ. By Proposition 8 we have µ ' id which means
µ = α idβ = αβ for some (α)(β) ∈ E(A!).
Conversely, suppose every µ ∈ Ant(A) factors as µ = αβ for some (α)(β) ∈ E(A!). Suppose A× C ∼= B× C . If C has an

odd cycle, then A ∼= B by Theorem 3. If C is bipartite, then B ∼= Aµ for some µ ∈ Ant(A), by Proposition 5. Our assumption
about µ implies µ ' id, so Aµ ∼= A. Thus A ∼= B. �

These results lead to some simple sufficient conditions for a graph to be a cancellation graph. For instance, A is a
cancellation graph if |Ant(A)| = 1. More generally, we have the following.

Corollary 11. If every anti-automorphism of A has odd order, then A is a cancellation graph.

Proof. Let µ be an anti-automorphism. Since (µ)(µ) ∈ E(A!), the equation µ3 = µµµ gives µ3 ' µ, and by iteration
µp ' µ for any odd integer p. Then µ ' id whenever µ has odd order. �

Finally, we have the following characterization for bipartite graphs. Recall that an involution is an automorphism of
order 2.

Corollary 12. A bipartite graph is a cancellation graph if and only if none of its components admits an involution that interchanges
partite sets.

The proof is omitted, since Corollary 12 was the main result of [3]. As an illustration of the corollary, The graph A in
Fig. 1(b) has an involution that reverses its partite sets (reflection across a vertical axis) and indeed A does not have the
cancellation property since A× C ∼= B× C but A � B.
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