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a b s t r a c t

In 1971 Lovász proved the following cancellation law concerning
the direct product of digraphs. If A, B and C are digraphs, and C
admits no homomorphism into a disjoint union of directed cycles,
then A × C ∼= B × C implies A ∼= B. On the other hand, if such
a homomorphism exists, then there are pairs A ≁= B for which
A×C ∼= B×C . This gives exact conditions on C that governwhether
cancellation is guaranteed to hold or fail.

Left unresolved was the question of what conditions on A (or
B) force A × C ∼= B × C =⇒ A ∼= B, or, more generally, what
relationships between A and C (or B and C) guarantee this. Even
if C has a homomorphism into a collection of directed cycles, can
there still be restrictions on A and C that guarantee cancellation?
We characterize the exact conditions.

We use a construction called the factorial A! of a digraph A.
Given digraphs A and C , the digraph A! carries information that
determines the complete set of solutions X to the digraph equation
A × C ∼= X × C . We state the exact conditions under which there
is only one solution X (namely X ∼= A) and that is the situation in
which cancellation holds.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The article [1] solves the following variation of the cancellation problem for the direct product of
graphs: given graphs A and C , find all graphs B for which A × C ∼= B × C . This can be regarded as a
generalized cancellation law, for if there is only one such B, then A ∼= B, that is, cancellation holds.

The analogous problem in the category of digraphs presents some special challenges, but the
current article gives a complete solution. (Certain special cases were solved in [3,4].) Given arbitrary
digraphs A and C , we describe all digraphs B for which A × C ∼= B × C . In other words, we compute
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Fig. 1. Some digraphs.

all solutions X to the digraph equation A × C ∼= X × C . If there is only one solution, then it can only
be X = A. Thus, given an expression A × C ∼= B × C , we can determine whether or not it follows
necessarily that A ∼= B (i.e. whether cancellation holds).

We first fix the notation by recalling some relevant concepts. A digraph A is a binary relation E(A)
on a finite vertex set V (A), that is, a subset E(A) ⊆ V (A)× V (A). We denote an ordered pair in E(A) as
[x, y] and visualize it as an arrow pointing from x to y. Elements of E(A) are called arcs. A reflexive arc
[x, x] is called a loop. A graph is a digraph that is symmetric (as a relation). We use the usual notation
for graphs; in particular Kn is the complete graph on n vertices. By K ∗

n we mean Kn with loops added
to all of its vertices.

For a positive integer n, the directed cycle
−→
Cn is the digraph with vertices {0, 1, 2, . . . , n − 1} and

arcs [i, i+ 1] (arithmetic modulo n). Thus
−→
C1 consists of a single vertex with a loop, and

−→
C2 = K2. The

directed path
−→
Pn is

−→
Cn with the arc [n − 1, 0] removed. See Fig. 1.

We denote the condition of X being a sub-digraph of A as X ⊆ A. A digraph A is strongly connected
if for every pair x, y of its vertices there is a sub-digraph

−→
Pn ⊆ A beginning at x and ending at y. A

digraph is connected if any x and y are joined by a path, each arc of which has arbitrary orientation. The
connected components (respectively strongly connected components) of A are themaximal sub-digraphs
of A that are connected (respectively strongly connected).

If A and B are digraphs, A + B denotes their disjoint union. The disjoint union of n copies of A is
denoted as nA. A homomorphism ϕ : A → B is a map ϕ : V (A) → V (B) for which [x, y] ∈ E(A) implies
[ϕ(x), ϕ(y)] ∈ E(B). Two digraphs A, B are homomorphically equivalent if there are homomorphisms
A → B and B → A. An isomorphism is a bijective homomorphism. By A ∼= Bwemean that A and B are
isomorphic.

The direct product of two digraphs A and B is the digraph A × B whose vertex set is the Cartesian
product V (A)×V (B) andwhose arcs are the pairs [(x, y), (x′, y′)]with [x, x′

] ∈ E(A) and [y, y′
] ∈ E(B).

We assume the reader is familiar with direct products and homomorphisms. For standard references
see [2,5].

2. Cancellation laws

Lovász [6] defines a digraph C to be a zero divisor if there exist non-isomorphic digraphs A and B
for which A × C ∼= B × C . For example, Fig. 2 shows that

−→
C3 is a zero divisor: if A =

−→
C3 and B = 3

−→
C1 ,

then A ≁= B, yet A ×
−→
C3 ∼= B ×

−→
C3 . (Both products are isomorphic to three copies of

−→
C3 .) Here is the

main result concerning zero divisors.

Theorem 1 (Lovász [6, Theorem 8]). A digraph C is a zero divisor if and only if there is a homomorphism
ϕ : C →

−→
Cp1 +

−→
Cp2 +

−→
Cp3 + · · · +

−→
Cpk for prime numbers p1, p2, . . . , pk.

Thus, in particular,
−→
Cn with n > 1 is a zero divisor. (Even if n is not prime, there is an n

p -fold ho-

momorphic cover ϕ :
−→
Cn →

−→
Cp for any prime divisor p of n.) Also each

−→
Pn is a zero divisor, for clearly

there is a homomorphism
−→
Pn →

−→
Cp for any n and p.

Theorem 1 can be regarded as a cancellation law for the direct product, as it gives exact conditions
on C under which A × C ∼= B × C necessarily implies A ∼= B. However, it does not give a complete
solution to the cancellation problem.Wemight also ask for conditions on A (or relationships between
A and C) that force cancellation. For example, ifA =

−→
C1 and C is nontrivial, then certainlyA×C ∼= B×C
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Fig. 2. Example of a zero divisor.

implies A ∼= B regardless of whether C is a zero divisor. What other A’s have this property? This paper
gives a complete solution.

We will need the following dichotomy involving zero divisors: Theorem 1 characterizes zero
divisors as those digraphs C that admit a homomorphism C →

−→
Cp1 +

−→
Cp2 + · · · +

−→
Cpk . For each i there

is a homomorphism
−→
Cpi →

−→
Cm , wherem = gcd(p1, . . . , pk). (Notem = 1 unless all the pi are equal or

k = 1.) Thus every zero divisor admits a homomorphism into some directed cycle. There may be only
finitelymanym forwhich homomorphisms C →

−→
Cm exist. But for some C itmay happen that there is a

homomorphism C →
−→
Cm for each positive integerm. Then, by taking n > |V (C)|, we see that C admits

a homomorphism C →
−→
Pn ⊆

−→
Cn . Conversely, since there are homomorphisms

−→
Pn →

−→
Cm for any n

and m, the existence of a homomorphism C →
−→
Pn guarantees a homomorphism C →

−→
Cm for every

m. Therefore zero divisors C can be divided into two distinct andmutually exclusive types: on the one
hand there are those that admit a homomorphism C →

−→
Pn for some n (and thus homomorphisms

C →
−→
Cp for infinitelymany p); on the other hand there are those that admit homomorphisms C →

−→
Cm

for only finitely manym. These facts suggest the following definition.

Definition 1. A zero divisor is of Type P if there is a homomorphism C →
−→
Pm for somem. If C is not of

Type P, then it admits homomorphisms C →
−→
Cm for only finitely manym, and we say C is of Type C.

Remark 1. If a zero divisor C is of Type P, then there is a smallest n forwhich there is a homomorphism
C →

−→
Pn . If C is of Type C, there is a largest n for which C →

−→
Cn ; if C is connected, Theorem 1 implies

n > 1.

Zero divisors of Type P having homomorphisms into P1 are spectacularly uninteresting, as they
have no arcs. For them, the cancellation problem is trivial: A×C ∼= B×C if and only if |V (A)| = |V (B)|.
Wewill have nothing further to say about this situation; henceforwardwe tacitly assume that any zero
divisor has at least one arc.

Our methods will make frequent reference to the two types of zero divisors given by Definition 1.
We will also require the following theorems due to Lovász. (See [5] for a very readable proof of
Theorem 2 and related topics.)

Theorem 2 (Lovász [6, Theorem 6]). Let A, B, C and D be digraphs. If A × C ∼= B × C and there is a
homomorphism D → C, then A × D ∼= B × D.

Theorem 3 (Lovász [6, Theorem7]). Let A, B, C be digraphs. If A×C ∼= B×C, then there is an isomorphism
from A × C to B × C of the form (x, c) → (ϕc(x), c), where ϕc : V (A) → V (B) is a map that depends
on c.

3. Permuted digraphs

Given a digraphA, let SV (A) denote the symmetric group onV (A). (That is, SV (A) is the set of bijections
from V (A) to itself.) The next definition is central to the remainder of this paper. For a permutation
π ∈ SV (A), define the permuted digraph Aπ as follows.
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Fig. 3. Examples of permuted digraphs.

Definition 2. If A is a digraph and π ∈ SV (A), the permuted digraph Aπ has vertices V (Aπ ) = V (A)
and arcs E(Aπ ) = {[x, π(y)] : [x, y] ∈ E(A)}. Thus [x, y] ∈ E(A) if and only if [x, π(y)] ∈ E(Aπ ), and
[x, y] ∈ E(Aπ ) if and only if [x, π−1(y)] ∈ E(A).

Fig. 3 shows several examples. In the upper part of the figure, the cyclic permutation (0245) of the

vertices of
−→
C6 yields a permuted graph

−→
C6

(0245)
= 2

−→
C3 . The permuted digraph

−→
C6

(01)
is also shown.

The lower part of the figure shows a digraph A and two of its permuted digraphs. For another example,
note that Aid

= A for any digraph A. We remark that it may be possible that Aπ ∼= A for some non-

identity permutation π . For instance,
−→
C6

(024)
∼=

−→
C6 .

The significance of permuted digraphs is given by the following proposition, which asserts that
whenever A × C ∼= B × C , it necessarily follows that B is a permuted digraph of A.

Proposition 1. Let A, B and C be digraphs, where C has at least one arc. If A × C ∼= B × C, then B ∼= Aπ

for some permutation π ∈ SV (A).

Proof. Suppose A × C ∼= B × C , and C has at least one arc. Because C has an arc, there is a homomor-
phism

−→
P2 → C , and Theorem 2 yields an isomorphism ϕ : A ×

−→
P2 → B ×

−→
P2 . In turn, Theorem 3

guarantees that this isomorphism has the form (x, ε) → (ϕε(x), ε), where ε ∈ {0, 1} = V (
−→
P2 ),

and each ϕϵ is a map from V (A) to V (B). As ϕ is an isomorphism, it follows immediately that ϕ0
and ϕ1 are bijections. Hence ϕ−1

0 ϕ1 : V (A) → V (A) is a permutation in SV (A). We now show that
ϕ0 : V (Aϕ−1

0 ϕ1) → V (B) is an isomorphism. Simply observe that

[x, y] ∈ E(Aϕ−1
0 ϕ1)

⇐⇒ [x, (ϕ−1
0 ϕ1)

−1(y)] ∈ E(A) (definition of Aϕ−1
0 ϕ1 )

⇐⇒ [x, ϕ−1
1 ϕ0(y)] ∈ E(A)

⇐⇒ [(x, 0), (ϕ−1
1 ϕ0(y), 1)] ∈ E(A ×

−→
P2 ) (definition of A ×

−→
P2 )

⇐⇒ [(ϕ0(x), 0), (ϕ1ϕ
−1
1 ϕ0(y), 1)] ∈ E(B ×

−→
P2 ) (apply isomorphism ϕ)

⇐⇒ [(ϕ0(x), 0), (ϕ0(y), 1)] ∈ E(B ×
−→
P2 )

⇐⇒ [ϕ0(x), ϕ0(y)] ∈ E(B) (definition of B ×
−→
P2 ).

Thus Aϕ−1
0 ϕ1 ∼= B, and the proof is complete. �

In general, the converse of Proposition 1 is (as we shall see) false. Depending on A and C , not every
π yields a digraph B = Aπ for which A×C ∼= B×C . In addition, it is possible that π ≠ σ but Aπ ∼= Aσ .
Towards clarifying these issues, we next introduce a construction called the factorial of a digraph.
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Fig. 4. Action of an arc [α, β] ∈ E(A!) on the neighborhood of a vertex z ∈ V (A).

4. The digraph factorial

The key to our main results is the digraph factorial, an operation on digraphs that is somewhat
analogous to the factorial operation on integers. It was introduced in [4], but the interpretation here
is extended significantly. Recall that SV (A) is the set of permutations of the vertices of a digraph A.

Definition 3. Given a digraph A, its factorial is another digraph, denoted as A!, and defined as follows.
The vertex set is V (A!) = SV (A). For the edge set, we define [α, β] ∈ E(A!) provided that [x, y] ∈

E(A) ⇐⇒ [α(x), β(y)] ∈ E(A) for all pairs x, y ∈ V (A).

Observe that the definition implies that there is a loop [α, α] at α ∈ V (A!) if and only if α is an
automorphism of A. In particular, any A! has a loop at the identity id. We remark also that (at least for
finite digraphs) Definition 3 can be weakened by replacing the ‘‘⇐⇒’’ with a ‘‘⇒’’. It follows that A!

is the subgraph of the digraph exponential AA induced on the bijections A → A.
Our first example explains the origin of our term ‘‘factorial’’. Let K ∗

n be the complete (symmetric)
graph with a loop at each vertex, and note that

K ∗

n ! ∼= K ∗

n!
∼= K ∗

n × K ∗

n−1 × K ∗

n−2 × · · · × K ∗

3 × K ∗

2 × K ∗

1 .

For less obvious computations, it is helpful to keep in mind the following interpretation of E(A!).
Any arc [α, β] ∈ E(A!) can be regarded as a permutation of the arcs of A, where [α, β]([x, y]) =

[α(x), β(z)]. This permutation preserves in-incidences and out-incidences in the following sense:
given two arcs [x, y], [x, z] of A that have a common tail, [α, β] carries them to the two arcs
[α(x), β(y)], [α(x), β(z)] of A with a common tail. Given two arcs [x, y], [z, y] with a common tip,
[α, β] carries them to the two arcs [α(x), β(y)], [α(z), β(y)] of Awith a common tip.

Bear inmind, however, that even if the tip of [x, y]meets the tail of [y, z], then the arcs [α, β]([x, y])
and [α, β]([y, z]) need notmeet; they can be quite far apart in A. To illustrate these ideas, Fig. 4 shows
the effect of a typical [α, β] on the arcs incident with a typical vertex z of A.

We use these ideas in the next example, whichwill be used later. It also illustrates that the factorial
can have just a single arc [id, id].

Example 1. Let Tn denote the (unique) transitive tournament on n vertices. This digraph has distinct
out-degrees n−1, n−2, . . . , 0 and distinct in-degrees 0, 1, 2, . . . , n−1. The above discussion implies
that for a given [α, β] ∈ E(Tn!), the out-degree of any x ∈ V (Tn) equals the out-degree of α(x). Hence
α = id. The same argument involving in-degrees gives β = id. Therefore Tn! has n! vertices but only
one arc [id, id].

Fig. 5 shows T3!, plus two other examples of factorials.
By Definition 3, [α, β] ∈ E(A!) if and only if [α−1, β−1

] ∈ E(A!). In fact, it is immediate that
E(A!) is a group with identity [id, id] and multiplication [α, β][γ , δ] = [αγ , βδ]. We also have
[α, β]

−1
= [α−1, β−1

]. Moreover, Aut(A) embeds as a subgroup of E(A!), for it is the set of loops [α, α]

of E(A!). In this sense, E(A!) can be regarded as an extension of Aut(A). It carries all the information of
Aut(A), plus more.

As an example, note that E(K ∗
n !) consists of all elements [α, β] where α, β ∈ Sn, so we see that

E(K ∗
n !) is isomorphic to the group product Sn × Sn. At another extreme, E(Tn!) is the trivial group. The

reader may verify that E(A!) in Fig. 5 is the Klein four-group. Referring again to Fig. 5, observe that
E(

−→
C3 !) is the symmetric group S3.
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Fig. 5. Examples of digraphs (left) and their factorials (right).

5. The group action of E(A!) on V (A!)

The group E(A!) acts on V (A!) = SV (A) as [α, β] ·π = απβ−1. This action determines the situations
under which Aπ ∼= Aσ .

Proposition 2. Suppose A is a digraph, and π, σ ∈ V (A!). Then Aπ ∼= Aσ if and only if π and σ are in
the same E(A!)-orbit of V (A!).

Proof. Let ϕ : Aπ
→ Aσ be an isomorphism. For any x, y ∈ V (A), we have

[x, y] ∈ E(A)
⇐⇒ [x, π(y)] ∈ E(Aπ ) (definition of Aπ )
⇐⇒ [ϕ(x), ϕπ(y)] ∈ E(Aσ ) (apply isomorphism ϕ)
⇐⇒ [ϕ(x), σ−1ϕπ(y)] ∈ E(A) (definition of Aσ ).

From this, and the definition of A!, it follows that [ϕ, σ−1ϕπ ] ∈ E(A!). We then have

[ϕ, σ−1ϕπ ] · π = ϕππ−1ϕ−1σ = σ ,

so π and σ are indeed in the same orbit.
Conversely, suppose π and σ are in the same E(A!)-orbit of V (A!), so σ = απβ−1 for some

[α, β] ∈ E(A!). We claim that α : Aπ
→ Aαπβ−1

is an isomorphism. Indeed,

[x, y] ∈ E(Aπ )

⇐⇒ [x, π−1(y)] ∈ E(A) (definition of Aπ )
⇐⇒ [α(x), βπ−1(y)] ∈ E(A) ([α, β] ∈ E(A!))
⇐⇒ [α(x), απβ−1βπ−1(y)] ∈ E(Aαπβ−1

) (definition of Aαπβ−1
)

⇐⇒ [α(x), α(y)] ∈ E(Aαπβ−1
),

and the assertion follows. �

Given an arc [α, β] ∈ E(A!), we have [α, β]·β = α. The previous proposition then assuresAα ∼= Aβ ,
and therefore yields the following corollaries.

Corollary 1. If two elements π, σ ∈ V (A!) are in the same component of A!, then Aπ ∼= Aσ .

As A = Aid, Corollary 1 combines with Proposition 1 to yield the following sufficient condition for
cancellation. (Exact conditions are more subtle, but we will lay them out in the next two sections.)

Corollary 2. If A! is connected, then A × C ∼= B × C implies A ∼= B (whether or not C is a zero divisor).

6. Main results: zero divisors of Type P

Recall that Definition 1 divides zero divisors into Types P and C. We now investigate zero divisors
of Type P, that is, those that admit a homomorphism C →

−→
Pn . (Zero divisors of Type C are addressed

in the subsequent section.)
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The next theorem characterizes, given A and a zero divisor C of Type P, all digraphs B for which
A × C ∼= B × C . List the vertices of

−→
Pn (consecutively) as 0, 1, . . . , n − 1. A directed walk of length n in

a digraph is a sequence of n arcs [x0, x1], [x1, x2], [x2, x3], . . . , [xn−1, xn] (not necessarily distinct).

Theorem 4. Suppose A, B and C are digraphs, and C is a zero divisor (with at least one arc) of Type P. Let
n ≥ 2 be the smallest integer for which there is a homomorphism ρ : C →

−→
Pn . Then A × C ∼= B × C if

and only if B ∼= Aπ , where π is a vertex on a directed walk of length n − 2 in the factorial A!.

Proof. Suppose that B ∼= Aπ , where π is a vertex on a directed walk of length n − 2 in A!. List the
walk’s vertices consecutively as π1, π2, . . . , πn−1, where π = πi for some i. By Corollary 1, B ∼= Aπ1 ,
so we just need to show A × C ∼= Aπ1 × C . Define a map ϕ : V (A × C) → V (Aπ1 × C) as

ϕ(x, c) =


π1π2 · · · πρ(c)(x), c


if 1 ≤ ρ(c) ≤ n − 1,

(x, c) if ρ(c) = 0.

Clearly this is a bijection, because each πi is a permutation of V (A) = V (Aπ1). We need to show that
it is an isomorphism, that is, we must show [(x, c), (y, c ′)] ∈ E(A × C) ⇐⇒ [ϕ(x, c), ϕ(y, c ′)] ∈

E(Aπ1 × C).
If either [(x, c), (y, c ′)] ∈ E(A × C) or [ϕ(x, c), ϕ(y, c ′)] ∈ E(Aπ1 × C), then cc ′

∈ E(C) and the
definition of ρ then implies ρ(c ′) = ρ(c) + 1. With this in mind we consider two cases.

Case I. Suppose [(x, c), (y, c ′)] satisfies ρ(c) ≠ 0. Consider the following product of arcs in E(A!):

[π1, π2][π2, π3][π3, π4] · · · [πρ(c), πρ(c′)] = [π1π2 · · · πρ(c), π2π3 · · · πρ(c′)].

This product is itself an arc in E(A!). Therefore we have

[x, y] ∈ E(A) ⇐⇒ [π1π2 · · · πρ(c)(x), π2π3 · · · πρ(c′)(y)] ∈ E(A)

⇐⇒ [π1π2 · · · πρ(c)(x), π1π2π3 · · · πρ(c′)(y)] ∈ E(Aπ1). (1)

From this it follows that

[(x, c), (y, c ′)] ∈ E(A × C)
⇐⇒ [(π1π2 · · · πρ(c)(x), c), (π1π2π3 · · · πρ(c′)(y), c ′)] ∈ E(Aπ1 × C)
⇐⇒ [ϕ(x, c), ϕ(y, c)] ∈ E(Aπ1 × C).

Case II. Suppose [(x, c), (y, c ′)] satisfies ρ(c) = 0, so ρ(c ′) = 1. Note that [(x, c), (y, c ′)] ∈

E(A × C) if and only if [(x, c), (π1(y), c ′)] ∈ E(Aπ1 × C), which (by definition of ϕ) is the same as
[ϕ(x, c), ϕ(y, c ′)] ∈ E(Aπ1 × C).

We have now established an isomorphism ϕ : A × C → Aπ1 × C .
Conversely, suppose A × C ∼= B × C . We must show that B ∼= Aπ , where π is a vertex of a directed

walk of length n − 2 in A!.
Let ϕ : A× C → B× C be an isomorphism. By Theorem 3, we can (and do) assume that ϕ has form

ϕ(x, c) = (ϕc(x), c), where ϕc : V (A) → V (B) is a bijection for each c . Thus, for an arbitrary fixed arc
[c, c ′

] ∈ E(C) we have [(x, c), (y, c ′)] ∈ E(A × C) if and only if [(ϕc(x), c), (ϕc′(y), c ′)] ∈ E(B × C). It
follows that for any [c, c ′

] ∈ E(C) we have

[x, y] ∈ E(A) ⇐⇒ [ϕc(x), ϕc′(y)] ∈ E(B), (2)

and from this we get

[x, y] ∈ E(B) ⇐⇒ [ϕ−1
c (x), ϕ−1

c′ (y)] ∈ E(A). (3)

As n is the smallest integer for which there is a homomorphism C →
−→
Pn , it readily follows that

some component C ′ of C satisfies ρ(V (C ′)) = V (
−→
Pn ). Thus C has a path P (not necessarily directed)

on consecutive vertices c0, c1, c2, . . . , ck for which ρ(c0) = 0 and ρ(ck) = n − 1. See Fig. 6.
Nowwe are going to construct a directedwalk of length n−2 in A!.We beginwith a certain labeling

of the endpoints of the arcs in P with maps ϕc from the definition of ϕ. For a given i ∈ V (
−→
Pn ), suppose
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Fig. 6. Arcs of P that ρ sends to [i, i + 1] and [i + 1, i + 2].

[c, c ′
] ∈ E(P) is the jth arc of P for which ρ([c, c ′

]) = [i, i+1]. Label c with themap λij = ϕc , and label
c ′ with the map µij = ϕc′ . Fig. 6 illustrates this. Notice that the sinks of P get two labels (both µ’s), as
do the sources (both λ’s). The first vertex of P gets the single label λ01 = ϕc0 , and the last vertex ck
is labeled with µ(n−2)s = ϕck−1 , for some 1 ≤ s ≤ k. Any other vertex ct of P gets two labels, a λρ(ct )s
and a µρ(ct )−1,s. Any two labels of the same vertex are equal functions. (This labeling is inspired by a
similar one in [6], used in a different context.)

Now, for any i, there is an odd number of labels λi1, λi2, λi3, . . . , λiℓi , and the same (odd) number
of labels µi1, µi2, µi3, . . . , µiℓi . For each 0 ≤ i ≤ n − 2, define the maps

Li = λi1λ
−1
i2 λi3λ

−1
i4 · · · λiℓi (4)

Mi = µi1µ
−1
i2 µi3µ

−1
i4 · · · µiℓi . (5)

Recall that, for any 1 ≤ j ≤ ℓi, the terms λij and µij that appear in these expressions are bijections
λij = ϕc and µij = ϕc′ for some arc [c, c ′

] ∈ E(P) ⊆ E(C). By applying Equivalences (2) and (3)
successively (and an odd number of times), we get

[x, y] ∈ E(A) ⇐⇒ [Li(x),Mi(y)] ∈ E(B). (6)

We now claim that Mi = Li+1: in Eq. (4), any pair of consecutive λ’s that correspond to a source
in P cancel. Likewise, in Eq. (5), any pair of consecutive µ’s that correspond to a sink in P cancel.
Once these pairs have been removed, the remaining terms in the expressions for Li and Mi match.
(Heuristically,we can think of the black vertices in Fig. 6 as being eliminated.) For example, in Fig. 6,we
have

Li+1 = λi+11 (λ−1
i+1 2 λi+1 3) λ−1

i+1 4 λi+1 5 = λi+11 λ−1
i+1 4 λi+1 5

Mi = (µi1 µ−1
i2 ) µi3 µ−1

i4 (µi5 µ−1
i6 ) µi7 = µi3 µ−1

i4 µi7.

Now, λi+11 = µi3 because they label the same vertex. Likewise, λi+1 4 = µi4 and λi+1 5 = µi7. Then
Mi = Li+1, as claimed.

Equivalence (6) can now be updated as

[x, y] ∈ E(A) ⇐⇒ [Li(x), Li+1(y)] ∈ E(B), (7)
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where 0 ≤ i ≤ n−3. In fact, the indexing allows us to define Ln−1 = Mn−2, so Equivalence (7) actually
holds for 0 ≤ i ≤ n − 1. From (7) we get

[x, y] ∈ E(A) ⇐⇒ [L−1
i−1Li(x), L

−1
i Li+1(y)] ∈ E(A), (8)

for each 1 ≤ i ≤ n− 2. Therefore we have the following walk of length n− 2 in A!, whose first vertex
is L−1

0 L1.

[L−1
0 L1, L−1

1 L2], [L−1
1 L2, L−1

2 L3], [L−1
2 L3, L−1

3 L4], . . . , [L−1
n−3Ln−2, L−1

n−2Ln−1].

To finish the proof, we show that L0 : AL−1
0 L1 → B is an isomorphism. Equivalence (7) yields [x, y] ∈

E(A) ⇐⇒ [L0(x), L1(y)] ∈ E(B). Using this, [x, y] ∈ E(AL−1
0 L1) if and only if [x, L−1

1 L0(y)] ∈ E(A), if and
only if [L0(x), L1L−1

1 L0(y)] ∈ E(B), if and only if [L0(x), L0(y)] ∈ E(B). �

Given a digraph A and a zero divisor C that admits C →
−→
Pn , Theorem 4 describes a complete

collection of digraphs B for which A × C ∼= B × C . Of course it is possible that some (possibly all) of
these B are isomorphic.We next describe ameans of constructing the exact set of isomorphism classes
of such B. Combining the previous theorem with Proposition 2 yields the following.

Corollary 3. Let A and C be digraphs, and C be a zero divisor of Type P, and n ≥ 2 be the least integer
for which there is a homomorphism C →

−→
Pn . Then the distinct (up to isomorphism) digraphs B for which

A × C ∼= B × C are obtained as follows: let Υn−2 be the set of vertices of A! that lie on a directed walk
of length n − 2. Take a maximal set of elements π1, π2, . . . , πk ∈ Υn−2 that are in distinct orbits of the
E(A!)-action on V (A!). Then the digraphs B for which A× C ∼= B× C are precisely B ∼= Aπ1 , Aπ2 , . . . , Aπk .

Cancellation holds (that is, A × C ∼= B × C guarantees A ∼= B) if and only if k = 1.

By Theorem 4, if C admits a homomorphism into
−→
P2 (which, given that C has at least one arc,

implies it is homomorphically equivalent to
−→
P2 ), then A × C ∼= B × C if and only if B ∼= Aπ , where

π is a vertex of A! on a walk of length 0. In this case there are no restrictions whatsoever on π ; it can
be any vertex of A!. Thus there can be potentially |V (A)|! different B ∼= Aπ . We summarize this in a
corollary, proved as a free-standing result in [4].

Corollary 4. If C is homomorphically equivalent to
−→
P2 , then A × C ∼= B × C if and only if B ∼= Aπ for

some permutation π of V (A).

Here is an application of the previous two corollaries that illustrates an extreme failure of
cancellation. Let Tn be the transitive tournament on n vertices. Example 1 in Section 4 showed that
Tn! has n! vertices and a single arc [id, id]. Therefore each E(A!)-orbit of V (A!) consists of a single
permutation. Also Υ0 = V (A!). Thus, if C is a zero divisor that admits a homomorphism into P2, then
there are exactly n! distinct digraphs Tπ

n for which Tn × C ∼= Tπ
n × C . By Proposition 1, this is the

maximum number possible. (But merely replace C with a zero divisor that admits a homomorphism
into Pn with n > 2; then Υn−2 = {id} and cancellation holds!)

7. Main results: zero divisors of Type C

The previous section treated all zero divisors of Type P. We now develop a parallel theory for
those of Type C. Our reasoning follows that of the previous section, except that the situation here
is somewhat richer. We will need the following definition.

A null-walk in A! is a directed closed walk [π0, π1], [π1, π2], [π2, π3], . . . , [πn−1, π0] for which
[π0, π1][π1, π2][π2, π3] · · · [πn−1, π0] = [id, id]. Null-walks will play a role analogous to that of the
directed walk of length n − 2 in the previous section. Although the conditions of the definition may
seem restrictive, null-walks are not particularly rare. Take any directed closed walk in A! multiply
its vertices consecutively to get a permutation σ , and traverse the walk |σ | times; the result is a
null-walk.

Our first result is analogous to one direction of Theorem 4.
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Proposition 3. Suppose a digraph C admits a homomorphismρ : C →
−→
Cn . If π ∈ V (A!) is on a null-walk

of length n, then A × C ∼= Aπ
× C.

Proof. Let C, ρ and π be as stated, and say π is on the null-walk

[π0, π1], [π1, π2], [π2, π3], . . . , [πn−1, π0].

By Corollary 1, Aπ ∼= Aπ0 , so it suffices to prove A × C ∼= Aπ0 × C . Define a map ϕ : V (A × C) →

V (Aπ0 × C) as

ϕ(x, c) =

π0π1π2 · · · πρ(c)(x), c


.

Clearly this is a bijection, because each πi is a permutation of V (A) = V (Aπ0). We need to show that
it is an isomorphism. Note that the product

[π0, π1][π1, π2][π2, π3] · · · [πρ(c), πρ(c)+1] = [π0π1 · · · πρ(c), π1π2 · · · πρ(c)+1]

is an arc in A!. Using this and the fact that ρ(c ′) = ρ(c) + 1 when [c, c ′
] ∈ E(C), it follows that

[(x, c), (y, c ′)] ∈ E(A × C)
⇐⇒ [(π0π1 · · · πρ(c)(x), c), (π1π2 · · · πρ(c)+1(y), c ′)] ∈ E(A × C)
⇐⇒ [(π0π1 · · · πρ(c)(x), c), (π0π1π2 · · · πρ(c)+1(y), c ′)] ∈ E(Aπ0 × C)
⇐⇒ [(π0π1 · · · πρ(c)(x), c), (π0π1π2 · · · πρ(c′)(y), c ′)] ∈ E(Aπ0 × C)
⇐⇒ [ϕ(x, c), ϕ(y, c ′)] ∈ E(Aπ0 × C).

(The last step required the null-walk hypothesis. If ρ(c) = n − 1, then ρ(c ′) = 0, and we need
π0π1π2 · · · πn−1 = id so that (π0π1π2 · · · πρ(c′)(y), c ′) reduces to (π0(y), c ′) = ϕ(y, c ′).) �

Developing an analog of the converse direction of Theorem4 requires a lemma. Recall that the proof
of that theorem involved a path P in C with an odd number of arcs that ρ sends to [i, i + 1]. The next
lemma will provide analogous conditions for our current setting.

Lemma 5. Suppose C is a digraph and n ≥ 2 is the largest integer for which there is a homomorphism
ρ : C →

−→
Cn . Then there is a closed walk W (not necessarily directed) in C that has, for each i, an odd

number of arcs [c, c ′
] with [ρ(c), ρ(c ′)] = [i, i + 1].

Proof. Define an integer-valued function f on the walks of C as follows. Suppose that in traversing a
walk W we cross arcs k times in the proper (tail-to-tip) orientation, and ℓ times in the reverse (tip-
to-tail) orientation. Then f (W ) = k − ℓ.

If the last vertex of W is the first vertex of a walk X , we denote their concatenation as W + X;
then f (W + X) = f (W ) + f (X). Also, let −W denote the walkW traversed in the opposite direction;
then f (−W ) = −f (W ). IfW and X have the same terminal vertex, thenW − X meansW + (−X), so
f (W − X) = f (W ) − f (X).

For each i ∈ V (
−→
Cn ), define a function fi like f , except that, in traversingW , we ignore all arcs except

those [x, y] for which [ρ(x), ρ(y)] = [i, i + 1] (arithmetic modulo n). Then f =
n−1

i=0 fi. We claim
that, if W is a closed walk, then fi(W ) = fj(W ) for all i, j. To verify this, we show fi(W ) = fi+1(W ) for
each i. In traversingW , wemaymeet the fiber ρ−1(i+1) numerous times. Fig. 7 shows the threeways
this can happen. Each of these possibilities contributes exactly the same amount to fi(W ) and fi+1(W ).
The first contributes 1 to both fi(W ) and fi+1(W ) if the traversal is in the direction of the arrows, or
−1 if it is against the arrows. The two cases on the right both contribute 0 to each. It follows that
fi(W ) = fi+1(W ).

For each closed walk W , we thus have f (W ) =
n

i=0 fi(W ) = nfi(W ), and this does not depend
on i.

If fi(W ) is odd for some closed walkW , then, for each i,W must have an odd number of arcs [c, c ′
]

that project to [i, i + 1]. (To see this, refer to Fig. 7. If there were an even number of such arcs, then
fi(W ) would be the sum of an even number of 1’s and −1’s, hence even.) To finish the proof, we show
that such a W must exist.
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Fig. 7. The waysW can cross the fiber ρ−1(i + 1). Each crossing contributes the same amount to fi(W ) and fi+1(W ).

To the contrary, suppose no such W exists. Then fi(W ) is even for every closed walk W , and
f (W ) = nfi(W ) = 2ndW for some integer dW (that depends on W ). We are going to reach a
contradiction by producing a homomorphism ρ ′

: C →
−→
C2n, contradicting the fact that n is the largest

integer for which there is a homomorphism C →
−→
Cn . Clearly it suffices to show how to construct such

a homomorphism on each component of C , so henceforward we may assume C is connected.
Define a map ρ ′

: V (C) → V (
−→
C2n) as follows. Fix a base point c0 ∈ V (C). Given any c ∈ V (C), take

a path P joining c0 to c and set ρ ′(x) = f (P) (mod 2n). This is well defined, for if P ′ is another such
path, then P −P ′ is a closedwalk, so f (P)− f (P ′) = f (P −P ′) = 2ndP+P ′ . Thus f (P) = f (P ′) (mod 2n).

To see that ρ ′ is a homomorphism, suppose [c, c ′
] is an arc of C . Take a path P from c0 to c . Then

P + [c, c ′
] is a path from c0 to c ′. We have [ρ ′(c), ρ ′(c ′)] = [f (P), f (P + [c, c ′

])] = [f (P), f (P) +

1 (mod 2n)] ∈ E(
−→
C2n). �

The next result is analogous to the converse direction of Theorem 4.

Proposition 4. Suppose A, B and C are digraphs, and n ≥ 2 is the largest integer for which C admits a
homomorphism ρ : C →

−→
Cn . If A × C ∼= B × C then B ∼= Aπ , where π is a vertex of a null-walk of length

n in A!.
Proof. Let A, B, C and ρ be as stated. Suppose there is an isomorphism ϕ : A × C → B × C . By
Theorem 3, we assume that ϕ(x, c) = (ϕc(x), c).

At this point the proof parallels that of Theorem 4. For any [c, c ′
] ∈ E(C),

[x, y] ∈ E(A) ⇐⇒ [ϕc(x), ϕc′(y)] ∈ E(B), (9)

[x, y] ∈ E(B) ⇐⇒ [ϕ−1
c (x), ϕ−1

c′ (y)] ∈ E(A). (10)

We now construct a null-walk of length n in A!. By Lemma 5, C has a closed walk W , which, for
each i, has an odd number of arcs [c, c ′

] with [ρ(c), ρ(c ′)] = [i, i + 1]. It is easy to confirm that this
oddness criterion forces W to have a vertex c0 that is neither a source nor sink in W . (That is, W has
consecutive arcs of form [c ′, c0], [c0, c ′′

] or [c0, c ′′
], [c ′, c0].) Let c0 be the initial (and terminal) vertex

of W , and agree to traverse W with the orientation that gives consecutive arcs [c ′, c0], [c0, c ′′
]. Also,

arrange the indexing of
−→
Cn so that ρ(c0) = 0. Then (locally) the fiber over the vertex i + 1 of

−→
Cn is as

in Fig. 6.
We label the vertices of W as we did those of P in the proof of Theorem 4: for a given i ∈ V (

−→
Cn ),

suppose [c, c ′
] ∈ E(W ) is the jth arc of W for which ρ([c, c ′

]) = [i, i + 1]. Label c with the map
λij = ϕc , and label c ′ with the map µij = ϕc′ . (See Fig. 6, but replace

−→
Pn with

−→
Cn .)

Thanks to Lemma 5, given i, there is an odd number of labels λi1, λi2, λi3, . . . , λiℓi , and the same
(odd) number of labels µi1, µi2, µi3, . . . , µiℓi . For each 0 ≤ i ≤ n − 1, put

Li = λi1λ
−1
i2 λi3λ

−1
i4 · · · λiℓi

Mi = µi1µ
−1
i2 µi3µ

−1
i4 · · · µiℓi .

The terms λij and µij that appear in these expressions are bijections λij = ϕc and µij = ϕc′ for
some arc [c, c ′

] ∈ E(W ) ⊆ E(C). Applying Equivalences (9) and (10) successively (an odd number of
times) yields

[x, y] ∈ E(A) ⇐⇒ [Li(x),Mi(y)] ∈ E(B).
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Just as in the proof of Theorem 4, we get Mi = Li+1, but this time the index arithmetic can be done
modulo n. Then

[x, y] ∈ E(A) ⇐⇒ [Li(x), Li+1(y)] ∈ E(B),

and from this:

[x, y] ∈ E(A) ⇐⇒ [L−1
i Li+1(x), L−1

i+1Li+2(y)] ∈ E(B),

for each 0 ≤ i ≤ n − 1, where the index arithmetic is done modulo n.
Therefore we have the following directed closed walk of length n in A!:

[L−1
0 L1, L−1

1 L2], [L−1
1 L2, L−1

2 L3], [L−1
2 L3, L−1

3 L4], . . . , [L−1
n−1L0, L−1

0 L1].

Multiplying arcs, we see that this is a null-walk with initial vertex L−1
0 L1.

To finish the proof, note that L0 : AL−1
0 L1 → B is an isomorphism, by the same argument used in

the last paragraph of the proof of Theorem 4. �

We caution that if A × C ∼= Aσ
× C , then Proposition 4 does not imply that σ is necessarily on a

null-walk in A! of length n; rather it implies Aσ ∼= Aπ for someπ on such a null-walk. (By Proposition 2,
this means that the E(A!)-orbit of σ meets a null-walk of length n.) For a simple example of this
phenomenon, let C =

−→
C2 , so n = 2. Let A =

−→
C3 , whose factorial appears in the bottom of Fig. 5.

Using the vertex labeling of that figure, put σ = (012). The reader may check that A × C ∼= Aσ
× C ,

but σ is not on a null-walk of length 2. However, the orbit of σ meets the identity, which is on a
null-walk of length 2 (i.e., the loop at id traversed twice).

We now adapt the previous two propositions to our final theorem. Theorem 1 implies that each
component of a zero divisor C admits a homomorphism into a directed cycle of prime length, and,
by our previous discussion, each component is a zero divisor of Type P or C. Let C be a disjoint union
C = C1

+ C2
+ · · · + Ck of connected zero divisors of Type C, each of which admits a homomorphism

C i
→

−→
Cni , where ni is the largest such integer. We argue that A × C ∼= B × C if and only if B ∼= Aπ ,

where the E(A!) orbit of π meets null-walks of lengths n1, n2, . . . , nk.
If indeed the orbit of π meets null-walks of lengths n1, n2, . . . , nk, then Propositions 2 and 3 imply

that A×C i ∼= B×C i for 1 ≤ i ≤ k. Because the direct product distributes over disjoint union, we have

A × C = A × C1
+ A × C2

+ · · · + A × Ck,

B × C = B × C1
+ B × C2

+ · · · + B × Ck.
(11)

(This is equality, not mere isomorphism.) It follows that A × C ∼= A × B.
Conversely suppose there is an isomorphism ϕ : A × C → B × C , which we may assume to have

form (x, c) → (ϕc(x), c). Combining this with Eqs. (11), it follows that ϕ restricts to an isomorphism
A × C i ∼= B × C i for each i. Propositions 2 and 3 imply that B ∼= Aπ , where the E(A!) orbit of π meets
null-walks of lengths n1, n2, . . . , nk.

In fact, in the above reasoning, there is no harm in adding to C some components of Type P, for a
directed walk of length n − 2 in A! (recall Theorem 4) can be found in any null-walk by ‘‘wrapping
around’’ to the extent needed. Combining the above discussion with Theorem 4, Propositions 3 and
4, and adapting the discussion preceding Corollary 3, we get the following theorem. It covers all zero
divisors not addressed in Section 6.

Theorem 6. Suppose C is an arbitrary zero divisor of Type C, so it is a disjoint union

C = C1
+ C2

+ · · · + Ck
+ P1

+ P2
+ · · · + Pℓ

of connected zero divisors, where each C i is of Type C and each P i is of Type P. (And possibly no P i are
present.) For each index 1 ≤ i ≤ k, let ni be the largest integer for which there is a homomorphism
C i

→
−→
Cni .

Then A × C ∼= B × C if and only if B = Aπ , where the E(A!) orbit of π ∈ V (A!) meets null-walks of
lengths n1, n2, . . . , nk.
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Let Υ be the set of all such π . Take a collection π1, π2, . . . , πq ∈ Υ of representatives of all orbits
of the E(A!) action on Υ . For A and C, the set of distinct digraphs B for which A × C ∼= B × C is
B = Aπ1 , Aπ2 , . . . , Aπq . If q = 1, then cancellation holds.

8. Applications to graphs

The questions we have posed can also be asked of graphs, that is, of symmetric digraphs: if A and
B are graphs, find all graphs B for which A × C ∼= B × C . When does cancellation hold? Of course
our results apply this situation, but the additional structure leads to simplifications and unexpected
twists. We now examine this.

To begin, observe that the factorial of a graph A is symmetric: [α, β] ∈ E(A!) if and only if
[α(x), β(y)] ∈ E(A) precisely when [x, y] ∈ E(A), if and only if [β(y), α(x)] ∈ E(A) precisely when
[y, x] ∈ E(A), if and only if [β, α] ∈ E(A!). In summary, if A is a graph, then its factorial is also a graph.

Next, we claim that a graph C is a zero divisor if and only if it is bipartite. Suppose C is a zero divisor.
If C has an edge, then it has no homomorphism into any directed path or cycle that is not already a
graph. By Theorem 1, C has a homomorphism into the graph

−→
C 2, that is, C is bipartite. Conversely, let

C be bipartite, so it has a homomorphism into
−→
C 2. Theorem 1 implies it is a zero divisor in the class

of digraphs. That is, there are non-isomorphic digraphs A, Bwith A × C ∼= B × C . Since A and B should
be graphs, we are not quite done. But simply take A =

−→
C 2 and B = 2

−→
C 1. Then A × C ∼= 2C ∼= B × C ,

so C is a zero divisor in the class of graphs, completing the claim.
Note that a bipartite graph C (with at least one edge) is necessarily a zero divisor of Type C. Given

such a C and a graph A, the previous section implies that A×C ∼= B×C if and only if A ∼= Bπ , whereπ is
on a null-walk of length 2 in A!. Such a walk necessarily has form [π, π−1

][π−1, π], and [x, y] ∈ E(A)
if and only if [π(x), π−1(y)] ∈ E(A).

A permutation π of V (A) satisfying [x, y] ∈ E(A) ⇐⇒ [π(x), π−1(y)] ∈ E(A) is called an
anti-automorphism of A in [1], and we adopt that term here. Denote by Ant(A) the set of anti-
automorphisms of A, so Ant(A) is the set of vertices of A! on null-walks of length 2; it contains the
identity and is closed under inverses, though not composition (it is not a group).

The E(A!) action on V (A!) is stable on Ant(A) ⊆ V (A!): indeed, take π ∈ Ant(A). If [α, β] ∈

E(A!), we have [β, α] ∈ E(A!) (because A! is a graph). The definitions imply [x, y] ∈ E(A) ⇐⇒

[απβ−1(x), βπ−1α−1(y)] ∈ E(A) ⇐⇒ [απβ−1(x), (απβ−1)−1(y)] ∈ E(A). Thus απβ−1
= [α, β] ·

π ∈ Ant(A).
Finally, we caution that if A is a graph and π ∈ V (A!) is arbitrary, then although Aπ is a digraph, it

need not be a graph. However, if A is a graph, then Aπ is a graph if and only if π ∈ Ant(A). The simple
proof is omitted.

Combining these considerations with Theorem 6 yields our final result.

Theorem 7. Suppose A, B and C are graphs and C is a zero divisor (that is, bipartite). Then A×C ∼= B×C
if and only if B ∼= Aπ for some π ∈ Ant(A).

Given A and C, the set of all distinct graphs X for which A × C ∼= X × C can be found as follows.
Take distinct representatives π1, π2, . . . , πq of the orbits of the E(A!) action on Ant(A). Then X =

Aπ1 , Aπ2 , . . . , Aπq .

References

[1] R. Hammack, On direct product cancellation of graphs, Discrete Mathematics 309 (2009) 2538–2543.
[2] R. Hammack, W. Imrich, S. Klavžar, Handbook of Product Graphs, second ed., in: Discrete Mathematics and its Applications,

CRC Press, Taylor and Francis, Boca Raton, FL, 2011.
[3] R. Hammack, H. Smith, Zero divisors among digraphs, Graphs and Combinatorics (in press) http://dx.doi.org/10.1007/

s00373-012-1248-x.
[4] R. Hammack, K. Toman, Cancellation of direct products of digraphs, Discusiones Mathematicae Graph Theory 30 (4) (2010)

575–590.
[5] P. Hell, J. Nešetřil, Graphs and Homomorphisms, in: Oxford Lecture Series in Mathematics, Oxford U. Press, 2004.
[6] L. Lovász, On the cancellation law among finite relational structures, Periodica Mathematica Hungarica 1 (2) (1971)

145–156.




