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Abstract Given two cycles A and B in a graph, such that A∩B is a non-trivial path, the
connected sum A+̂B is the cycle whose edges are the symmetric difference of E(A)

and E(B). A special kind of cycle basis for a graph, a connected sum basis, is defined.
Such a basis has the property that a hierarchical method, building successive cycles
through connected sum, eventually reaches all the cycles of the graph. It is proved that
every graph has a connected sum basis. A property is said to be cooperative if it holds
for the connected sum of two cycles when it holds for the summands. Cooperative
properties that hold for the cycles of a connected sum basis will hold for all cycles
in the graph. As an application, commutativity of a groupoid diagram follows from
commutativity of a connected sum basis for the underlying graph of the diagram. An
example is given of a noncommutative diagram with a (non-connected sum) basis of
cycles which do commute.
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1 Introduction

We say a diagram of isomorphisms is commutative if the composition of the mor-
phisms around each cycle in the underlying graph is the identity. (Here an arc traversed
backwards corresponds to the inverse of the corresponding morphism.) It seems plau-
sible that if such a diagram commutes on every cycle of a cycle basis for its underlying
graph, then the diagram should actually be commutative. However, this is false, and
we present a counterexample below, in Sect. 4. To understand how graph bases relate
to commutativity, we introduce connected sum bases.

The connected sumof two topological manifolds is themanifold formed by deleting
an open ball from the two summands and identifying the bounding spheres. This
operation can be applied to graphs, as cycles are 1-manifolds. If two cycles in a graph
intersect in a non-trivial path (1-ball), then their connected sum is the cycle that is the
union of the two cycles minus the interior of the common path of their intersection.
Therefore the operation of connected sum coincides with addition in the cycle space
of the graph, but it is defined only when the two cycles being added have intersection
equal to a non-trivial path.

A cycle basis for the cycle space of a graph G is called a connected sum basis (cs
basis) if any cycle in G can be constructed by a sequence of connected sum operations
using cycles in the basis, in a hierarchy to be described precisely in Sect. 2. In Sect. 3
we prove that every graph has a cs basis; Sect. 4 uses this to study commutativity of
diagrams of invertible morphisms. Section 5 is a discussion.

We remark in passing that another reason to consider cs bases is that they give a
solution to the 1-dimensional case of a more general topological problem: Construct
manifolds as connected sums of elementary components. Oriented 2-manifolds, other
than the sphere, are connected sums of tori. For 3-manifolds, a unique connected sum
decomposition result was proved by Milnor [16]; Wall [20] gave a cs-decomposition
for 1-connected 6-manifolds; cf. [13]. A graph-like 2-dimensional case is discussed
in Sect. 5.

Another useful property of cs bases is that they guarantee topological constancy
(all partial sums are cycles as a given cycle is built from the basis). The notion of
topological constancy was introduced in [2] and independently in [7]. In [10] we
noted two complexity invariants that might be investigated, maximum degree and
number of connected components, and one may add cycle rank to this list. Connected
sum bases allow one to construct cycles and even-degree subgraphs, so that the partial
sums do not exceed the complexity of the target.

In addition to topological and graph theoretic aspects, cs bases also have algebraic
implications. Topological constancy alone is not sufficient to control commutativity
in a diagram. An example is given in [10] of two commutative squares that intersect
in disjoint edges and have a non-commutative square as their cycle-space sum. In
Sect. 4 we present a diagram which fails to commute in spite of the commutativity of
all the cycles in a (non-cs) basis for the underlying graph. However, we prove that if
a diagram commutes on a cs basis, then it commutes on all cycles.
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Applications to related concepts in biochemistry were proposed by Klemm and
Stadler [11]. In their approach, cycles represent microstates of some system and per-
turbing a cycle by the addition of a short cycle as a “detour” of low energy leads to a
connection with Markov processes.

Previous work [7–12] used different terminology.

2 Connected Sum and Robustness of Cycle Bases

Let G = (V, E) be a simple graph; |G| denotes |V |, the order of G, and ‖G‖ denotes
its size |E |. A cycle is a 2-regular, connected graph. We write Cyc(G) for the set of
all cycle subgraphs of G.

The cycle space of G, denoted Z(G), is the F2-vector space consisting of all edge-
sets in G that induce even-degree subgraphs, with symmetric difference of sets as the
sum operation. We identify edge-sets with the subgraphs they induce; e.g., Cyc(G)

⊆ Z(G). The cycle rank of G is m(G) := dim(Z(G)). Then ([6, p. 39], [1, pp.
23–28])

m(G) = ‖G‖ − |G| + c0(G), (1)

where c0(G) is the number of connected components of G. A cycle basis of G is
a basis of Z(G) consisting entirely of cycles. Any graph has a cycle basis because
Cyc(G) spans Z(G) by Euler’s result that every even-degree graph is an edge-disjoint
union of cycles. See Harary [6] or Diestel [1] for undefined graph theory terminology.

Call two cycles compatible if they intersect in a nontrivial path, that is, a path with
at least one edge. Given two cycles Z1 and Z2 of a graph G, the mod-2 sum Z1 + Z2
in Z(G) is a connected sum (cs) if and only if Z1 and Z2 are compatible. To indicate
that the two cycles in a sum are compatible, we will write either

Z1 +̂ Z2 or Z1 + Z2 (cs).

The connected sum of two cycles is again a cycle. This is clear, but we derive it
briefly with some useful notation. Let P be any nontrivial path contained in a cycle
C . Let C − P denote the complementary path Q obtained by deleting all edges and
all interior vertices of P from C . Hence C = P ∪ Q and P ∩ Q = K2, the graph with
two isolated vertices. Now if Z ′, Z ′′ ∈ Cyc(G) and if Z ′ ∩ Z ′′ = P , a nontrivial path,
then Z ′ + Z ′′ = P ′ ∪ P ′′, where P ′ = Z ′ − P and P ′′ = Z ′′ − P are the appropriate
complementary paths. So Z ′ +̂ Z ′′ ∈ Cyc(G) because P ′ and P ′′ intersect only in
their endpoints.

As a binary operation, +̂ is commutative but not associative: both Z1+̂Z2 and
(Z1+̂Z2)+̂Z3 could be defined, while Z2+̂Z3 is not defined if Z3 intersects Z1 but
not Z2. For Zi ∈ C ⊆ Cyc(G), we call a sequence Z1, Z2, . . . , Zm a connected sum
sequence from C if the partial sum Zi−1 := Z1 +· · ·+ Zi−1 intersects the next term,
Zi , in a non-trivial path for all 2 ≤ i ≤ m. By induction each partial sum Zi is a cycle.
We denote this state of affairs as

Z1 + Z2 + · · · + Zm (cs). (2)
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Equivalently, one can write (2) as the left-most parenthesized sum:

(
· · · ((Z1 +̂ Z2) +̂ Z3

) · · ·
)

+̂ Zm .

Given a set of cycles C ⊆ Cyc(G), the connected sum closure of C is the set
ρ(C ) of all cycles that are connected sums of sequences from C . Define ρ0(C ) = C ,
ρ1(C ) = ρ(C ), and ρk(C ) = ρ(ρk−1(C )) for k any positive integer. Thus

C ⊆ ρ1(C ) ⊆ ρ2(C ) ⊆ ρ3(C ) ⊆ · · · ⊆ Cyc(G).

As G is finite, this chain eventually stabilizes (i.e., eventually the inclusions are all
equality). It can stabilize at C itself if no two members of C are compatible, or at
Cyc(G), or at some intermediate set of cycles.We sayC ⊆ Cyc(G) is a cs generating
set if ρk(C ) = Cyc(G) for some k. The depth of C is the least such k.

Here is an example from [10]. Recall that a cycle is geodesic if there is no path
between two of its vertices which is strictly shorter than their distance within the cycle;
let G (G) denote the set of geodesic cycles in G.

Theorem 1 If G is a graph, then G (G) is a cs generating set of depth no more than
c(G) − g(G), where c(G) and g(G) are the lengths of longest and shortest cycles
in G.

A robust basis for a graph G is a basis B for which ρ(B) = Cyc(G). Robust
bases have been constructed for several classes of graphs. The Mac Lane basis of a
connected plane graph is robust [10]. Complete graphs [7] have robust bases, as do
complete bipartite graphs Kr,s , when max(r, s) ≤ 4. However, [5] proves that Kn,n

has no robust basis when n ≥ 8.
Call a basis a connected sum basis (cs basis) if it is a cs generating set, that is,

ρk(B) = Cyc(G) for some k. (We called such bases iteratively robust in [10].)
The next section proves that every graph has a cs basis.

3 Main Results

We show that every graph has a connected sum basis using ear decompositions. Given
a graph G, consider a pairwise edge-disjoint sequence of subgraphs

C1, P2, P3, . . . , Pn, (3)

where C1 is a cycle and each Pi is a nontrivial path (called an ear). Let Gi be the
union of the first i terms (1 ≤ i ≤ n), that is,

Gi = C1 ∪ P2 ∪ P3 ∪ . . . ∪ Pi .

The sequence (3) is an ear decomposition ofG ifG = Gn , and for each ear,Gi−1∩Pi
is the endpoints of Pi . A theorem of Whitney [22] asserts that a graph is 2-connected
if and only if it has an ear decomposition.
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Given an ear decomposition (3), we define an associated ear basis to be a cycle
basisB = {C1,C2, . . . ,Cn}whereCi −Pi is a path P ′

i inGi−1 between the endpoints
of Pi , for each 2 ≤ i ≤ n. This is indeed a basis: It is linearly independent because
each element contains an edge that belongs to no other element. Also, Eq. (1) implies
|B| = m(G), because each Pi adds one more edge than vertex to Gi−1. An ear basis
is a basis that is associated to an ear decomposition; see [4,14].

Theorem 2 Let G be a 2-connected graph with cycle rank n and letB be an ear basis
for G. Then B is a connected sum basis of depth at most n − 1, that is,

ρn−1(B) = Cyc(G). (4)

Proof Suppose G is 2-connected. Take an ear decomposition C1, P2, . . . , Pn , with a
corresponding ear basis B = {C1,C2, . . . ,Cn}. It is enough to establish (4), and for
this it suffices to show Cyc(G) ⊆ ρn−1(B). We prove this by induction on n.

If n = 1, then Cyc(G) = ρ0(B), as G is a cycle in this case. Let n ≥ 2 and assume
the theorem is true for graphs of cycle rank n − 1. Note that C1, P2, P3, . . . , Pn−1 is
an ear decomposition of Gn−1 and B∗ = {C1,C2, . . . ,Cn−1} ⊆ B is a correspond-
ing ear basis of Gn−1. By the induction hypothesis, any cycle in Gn−1 belongs to
ρn−2(B∗) ⊆ ρn−2(B) ⊆ ρn−1(B).

We next show that any cycle Z in G that is not entirely contained in Gn−1 must
belong to ρn−1(B). Such a Z necessarily contains Pn as a subpath, but the part of it
in Gn−1 may deviate from P ′

n . (Recall Cn = P ′
n ∪ Pn , for a path P ′

n in Gn−1.) See
Fig. 1.

Denote the end vertices of Pn as a and b. Call a vertex x of Z transverse if x also
belongs to Cn , and Z has a subpath wxy for which at least one of w or y does not
belong to Cn . All transverse vertices of Z are in P ′

n and hence in Gn−1. Vertices a
and bmay ormay not be transverse, depending on Z . Moving along P ′

n from a to b, list
the transverse vertices consecutively as x1, x2, . . . , x�. (Possibly x1 = a or x� = b.
See Fig. 1.)

If Z = Cn , then Z ∈ B, and Z ∈ ρ0(B) ⊆ ρn−1(B). (In this case there are
no transverse vertices.) Hence, one may suppose Z �= Cn and complete the proof by
showing that Z can be written as a connected sum Z = Cn + Z1+ Z2 +· · ·+ Zm (cs)
for cycles Zi in Gn−1. (For then (4) holds because Cn as well as each Zi belong to
ρn−2(B).)

We define the cycles Zi algorithmically. For Z1, start at the first transverse vertex
x1, and move along a path Q1 in Z − Pn (counterclockwise in Fig. 1) until reaching a
transverse vertex xi1 . (Possibly i1 > 2, as in Fig. 1.) Then move from xi1 back along
P ′
n = Cn − Pn to x1, forming a path Q′

1. Put Z1 = Q1 + Q′
1.

Define Z2 similarly: start at xi1 and continue along Z − Pn until reaching the first
transverse vertex xi2 with i2 > i1. Let Q2 be the path traversed. From xi2 , move back
along Cn − Pn to xi1 , calling this path Q′

2. Put Z2 = Q2 + Q′
2.

We continue this pattern inductively. Say Z p−1 = Qp−1 +Q′
p−1 has been defined,

where Qp−1 is a path along Z − Pn from xi p−2 to xi p−1 , with i p−1 < �, and Q′
p−1

is a path along Cn − Pn from xi p−1 to xi p−2 . From xi p−1 , move along Z − Pn to the
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Fig. 1 Construction of the cycles Zi . The cycle Cn is drawn solid, and Z is dashed

first transverse vertex xi p for which i p > i p−1. Denote this resulting path in Z as Qp.
Now move back along Cn − Pn to xi p−1 , forming a path Q′

p. Put Z p = Qp + Q′
p.

There is one degenerate situation, illustrated by Z5 in Fig. 1. Here Q5 happens
never to deviate from Cn as it traverses Z from xi4 = x9 to the next transverse vertex
xi5 = x10. Then Q′

5 is a path back from xi5 = x10 to xi4 = x9. In this case Q5 = Q′
5.

We agree that in the definition Z p = Qp+Q′
p, the sum represents addition in the edge

space of G (i.e., symmetric difference on edge sets), so that Z p = ∅ when Qp = Q′
p.

At this point, one has constructed edge-disjoint paths Q′
1, . . . , Q

′
m in Cn whose

union is a path in Gn−1 that runs along Cn from x1 to x�. Let P be the path in Cn that
runs from x� to x1, completing the cycle, so that

Cn = P + Q′
1 + Q′

2 + · · · + Q′
m .

Similarly, one has edge-disjoint paths Q1, . . . , Qm in Z whose union is a path inGn−1
that runs along Z from x1 to x�. Then

Z = P + Q1 + Q2 + · · · + Qm .

Adding the two displayed equations above, we get

Z = Cn + Z1 + Z2 + · · · + Zm . (5)

Assume without loss of generality that any term Zi in this sum that is ∅ has been
deleted and that the remaining terms are reindexed sequentially.

Next we claim that (5) is indeed a connected sum. By construction, Cn ∩ Z1 = Q′
1,

which is a non-trivial path. Further, we claim that (Cn + Z1 + · · · + Zi−1)∩Zi = Q′
i .

Indeed, by construction Q′
i shares no edge with any Q′

1, . . . , Q
′
i−1, nor does it share
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an edge with any Q1, . . . , Qi−1. Thus Q′
i is a subgraph ofCn + Z1+ Z2+· · ·+ Zi−1.

Similarly, Qi shares no edge with any Q1, . . . , Qi−1. It is possible that some internal
vertex of Qi intersects some Q′

r for which r < i . But any such intersection points are
canceled by the term Zr in the partial sum Cn + Z1 + · · · + Zi−1. It follows that no
internal vertex of Qi belongs to Cn + Z1 + · · · + Zi−1. From these considerations we
infer that (Cn + Z1 + · · · + Zi−1) ∩ Zi = (Cn + Z1 + · · · + Zi−1) ∩ (

Qi + Q′
i

) =
Q′

i .
We have now written an arbitrary cycle Z of G as

Z = Cn + Z1 + Z2 + · · · + Zm (cs), (6)

with each summand in ρn−2(B). Therefore Z ∈ ρn−1(B), so (4) and the theorem
hold. 
�

If a graph is not 2-connected, then the union of cycle bases of its (2-connected)
blocks is a cycle basis for the entire graph. (If any block is K2, its cycle space is ∅, so
also its cycle basis is empty.) Applying Theorem 2 to each block yields a corollary.

Corollary 1 Every graph has a connected sum basis.

In particular, the union of ear bases of all the blocks of a graph is a cs basis.
A different improvement of Theorem 2 is possible which includes Theorem 1. The
following construction was also proposed by Eppstein [3].

Theorem 3 Every 2-connected graph has an ear basis of geodesic cycles.

Proof Let C1 be a geodesic cycle in a graph G. Inductively, having constructed
C1, . . . ,Ct−1, choose Pt to be an ear of minimum length for which the Gt−1-distance
between the endpoints of Pt is minimum. Any purported short-cut for Ct produces a
shorter choice than Ct , which is impossible. 
�

AsubsetP ⊆ Cyc(G) is called a cooperative property provided that Z1, Z2 ∈ P
implies Z1+̂Z2 ∈ P (for compatible Z1 and Z2). We say a setD of cycles in G has
property P if D ⊆ P . Induction yields the following.

Theorem 4 Let P be a cooperative property. If C is a cs generating set that has
property P , then P = Cyc(G).

Hence a cs basis possesses a cooperative property if and only if every cycle of
the graph has this property. The next section shows commutativity in diagrams is
cooperative.

4 Graphs, Diagrams, Commutativity, and Groupoids

Recall that a directed graph (or digraph) is a set of vertices and a set of ordered pairs
of distinct vertices, called arcs. Given any graph, one may form a digraph by choosing
for each edge exactly one of the two possible arcs; this digraph is called an orientation
of the graph. One can also simply replace every edge by both the corresponding arcs;
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Fig. 2 A diagram is a digraph
in a category. Vertices are
objects; arcs are morphisms

A B C D

E F G H

I J K L

M N O P

we call this the induced digraph. Conversely, any digraph D has an underlying graph
U (D).

A diagram is a mapping of a directed graph into a category, δ : D → C, where
for each vertex v of D, δ(v) is an object of C and each arc f from v to w in D is
represented by a C-morphism between the corresponding vertex-objects:

δ( f ) : δ(v) → δ(w);

equivalently, δ( f ) ∈ HomC(δ(v), δ(w)).
Each directed path (dipath) in D induces a morphism by composition. Call two

distinct dipaths parallel if they have the same initial and terminal vertices. A diagram
is said to parallel commute if parallel dipaths always induce the same morphism.
That is, the message sent depends only on the initiating and terminating vertex and
not on the route taken. See, e.g., Mac Lane [15, pp. 3–8].

However, as defined, parallel commutativity has a structural weakness. Consider
the example of a digraph which is an orientation of the graph C4 (the 4-cycle) so that
arcs alternate in direction. Hence, all dipaths have length 1 and no parallel dipaths
exist. Any diagram on such digraphs will parallel commute.

We are interested in the case where C is a groupoid category [15, p. 20], [19, pp.
45–50]; that is, every morphism is invertible. Let G be a fixed but arbitrary groupoid.
In this case, one can strengthen the concept of commutativity. Extend every diagram
δ : D → G to a diagram

δ∗ : D∗ → G

where D∗ is the induced digraph on the underlying graph G of D by setting

δ∗(a−1) = δ(a)−1,

where a−1 on the left means the inverse arc, (v,w)−1 = (w, v), while inverse on
the right-hand side of the equality is in G. We call δ groupoid-commutative if every
directed cycle (dicycle) in D∗ induces an identity morphism in G. In this case, one
says that each cycle commutes as the choice of orientation and of starting/ending
point does not affect the commutativity of any dicycle representing the cycle.

Groupoid-commutativity implies parallel commutativity but not conversely. Here-
after we use “commutative” only to refer to groupoid-commutativity (Fig. 2).
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Fig. 3 A noncommutative
diagram that commutes on a
non-cs basis. Each morphism is
rotation by 2π

3

CC

C

C C

C

Theorem 5 If G is any graph and δ : D → G is a diagram with U (D) = G and if δ
commutes on a cs basis for G, then δ is commutative on all cycles.

By Theorem 4, it suffices to prove that commutativity is cooperative.

Lemma 1 The connected sum of commutative cycles is commutative.

Proof Let δ : D → G be a diagram and let H be the underlying graph of D. Suppose
Z1, Z2 ∈ Cyc(H) with Z1 ∩ Z2 = P , a non-trivial path. Let a, b denote the two
endpoints of P . There are two dipaths corresponding to P , namely, P+ from a to b
and P− from b to a. Let P1 := Z1 − P and P2 := Z2 − P with P+

1 the orientation
of P1 from b to a and P−

2 the orientation of P2 from a to b. If Z1 and Z2 commute,
then letting “◦” denote composition in G (written left-to-right) one has

δ(Z+
1 ) = δ(P+

1 ) ◦ δ(P+) = 1δ(a) = δ(P−) ◦ δ(P−
2 ) = δ(Z−

2 ),

where Z+
1 and Z−

2 denote the corresponding orientations of Z1, Z2. Therefore,

1δ(a) = δ(Z+
1 ) ◦ δ(Z−

2 ) = δ(P+
1 ) ◦ δ(P−

2 ) = δ(Z+)

where Z = Z1+̂Z2 and Z+ is the orientation of Z agreeing with P+
1 and P−

2 . 
�
To underscore the significance of Theorem 5, Example 1 below exhibits a noncom-

mutative diagram in the groupoid of sets and bijections that commutes on a (non-cs)
basis.

Example 1 An orientation of the complete bipartite graph K3,3 is shown in Fig. 3.
Consider the diagram δ that maps each vertex to C, the set of complex numbers, and
each properly traversed arc to clockwise rotation t of 2π/3 around 0. The diagram is
not commutative, as it does not commute on any of its nine C4-subgraphs.

We demonstrate a cycle basis for K3,3 on which the example diagram, Fig. 3,
commutes. For this, let B = {C1,C2,C3,C4} be the four hexagons in the diagram
that are shown in Fig. 4, where for clarity we have oriented the edges of the hexagons
according to the diagram though of course these four cycles are unoriented graphs as
elements of Z(K3,3). The cycles C1 and C2 commute because t6 = 1, while C3 and
C4 commute by cancellation.

To show B is a basis we just need to check independence as the underlying graph
K3,3 has cycle rank 9−6+1 = 4. Let C = {C1,C2} and letD = {C3,C4}. Certainly
each of the sets C and D is independent. Note that any linear combination of the
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C1 C2 C3 C4

CC

C

C C

C

CC

C

C C

C

CC

C

C C

C

CC

C

C C

C

Fig. 4 Four commutative cycles from Fig. 3. Their underlying subgraphs form a basis for K3,3

elements of C has 0 or 3 diagonals, while any nontrivial linear combination of the
elements ofD has 2 diagonals. (A “diagonal” is any of the three edges not on the outer
hexagon of Fig. 3.)

Now suppose c1C1 + c2C2 + c3C3 + c4C4 = 0. If c1 = c2 = 0, then c3 = c4 = 0
becauseD is independent. If c3 = c4 = 0, then c1 = c2 = 0 becauseC is independent.
Otherwise c1C1 + c2C2 = c3C3 + c4C4, and each side of this equation has the same
number of diagonals. By the previous paragraph this number of diagonals must be 0,
and each ci is zero. Thus independence holds.

Note that no two members of B are compatible, so ρ(B) = B. Commutativity
can fail because B is not a cs-basis (so also not an ear basis).

5 Discussion

We have shown that groupoid diagrams commute if and only if every cycle in a cs
basis commutes. This provides an efficient procedure to determine if a diagram of
isomorphisms commutes. But if the basis is not a cs-basis, then commutativity for its
cycles does not guarantee global commutativity.

Thus, logical checks on the consistency of complex systems may be wrong because
of a hidden pathology in the combinatorics of the diagram and the basis. However,
a reliable strategy, using connected sum bases, does guarantee commutativity of the
entire diagram provided it holds on a basis.

Other properties are also cooperative. Commutativity up to a natural equivalence
(cutne) was noted in [8]. Another cooperative property allows the groupoid hom-
sets to have a natural involution, commutativity up to ±-sign. Thus, when a groupoid
diagram commutes or anti-commutes on all cycles in a cs basis, then every cycle
commutes or anti-commutes.

In quantum-computing, a database modeled on the hypercube could have each of
2d vertices v encoding a system-state, as an object X (v) in a category. If any of the d
bits of v is flipped, then there should be a morphism X (v) → X (w), wherew is v with
one of its bits reversed which gives the effect of changing a parameter. If one wishes
to not lose information, all these morphisms should be isomorphisms. By testing only
cycles in a basis, one obtains a very strong improvement over the task of checking all
cycles. For example, a cs basis exists for the hypercube [10]; in the 5-dimensional
case, one can test 49 cycles - rather than the total of 51 billion distinct cycle-subgraphs
(A085408 in [17]).
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One may represent a cs generating set C for a graph G using a spanning subgraph
Γ := Γ (G, C) of the Cayley graph [21, pp. 19–30] of the additive group of the F2-
vector subspace Z(G). The vertex set of Γ is Cyc(G) while the edges at a vertex
Z correspond to the cycles which are compatible with Z . More exactly, Γ is the
nested union of an expanding sequence of subgraphs Γk corresponding to ρk(C). The
connectedness of Γ is equivalent to C being a generating set. A similar approach,
though using only one subgraph, was proposed in [12,18]. The graph Γ models the
evolution of cycles [9].

A different use of connected sum applies to 2-dimensional simplicial complexes.
We call a 2-complex K quasi-Eulerian if every edge lies in a positive even number
of triangles (which are the 2-simplexes). Let L be any 2-complex and define

Z(L) := {K ⊆ L : K is quasi-Eulerian}.

Note that Z(L) corresponds to the kernel of the boundary map from the 2-chains to
the 1-chains and so is an F2-vector space (via symmetric difference of triangle-sets).
A 2-dimensional pseudo-manifold is a 2-complex with every edge in exactly two
triangles (plus uniformity and connectedness conditions, see [19, p. 148]). We ask:

Does every quasi-Eulerian K have a triangle-disjoint decomposition into pseudo-
manifolds?Underwhat conditions on a 2-complex L doesZ(L) have a basis of pseudo-
manifolds? When is it possible to write any pseudo-manifold contained in L as a
connected sum of those in a basis?

Acknowledgements We thank the referees for helpful comments.
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