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Abstract Several variants of hypergraph products have been introduced as generalizations of the strong and direct
products of graphs. Here we show that only some of them are associative. In addition to the Cartesian product, these
are the minimal rank preserving direct product, and the normal product. Counter-examples are given for the strong
product as well as the non-rank-preserving and the maximal rank preserving direct product.
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1 Introduction

Hypergraphs are natural generalizations of undirected graphs in which “edges” may consist of more than two
vertices. Products of hypergraphs have been well-investigated since the 1960s, see e.g. [1–4,6,7,9,10,12–15,18].

The article [8] surveyed the literature on hypergraph products. In addition to well-known constructions such as
the Cartesian product and the square product, it also considered various generalizations of graph products that had
rarely been studied, if at all. In particular, it considered several variants of hypergraph products that generalize the

direct and strong product of graphs, namely the direct products,
�× and ˜× , and the strong product

�

� . In addition, it

treated the normal product
�

� , a generalization of the strong graph product, and the direct product
�× , which were

introduced by Sonntag in the 1990’s [16,17].
Associativity is an important property of product operators. It is e.g. implicitly assumed in the standard definition

of prime factors and thus for decompositions of a given hypergraph into prime factors w.r.t. a given product [5,11].

The survey [8] mistakenly stated that the direct products
�× and ˜× and the strong product

�

� are associative. Here
we give a simple counterexample for these cases and prove associativity of the remaining hypergraph products.
This contribution is an addendum to the results discussed in [8].

2 Preliminaries

We start our brief discussion with the formal definition of hypergraphs, and the hypergraph products in question.
A (finite) hypergraph H = (V, E) consists of a (finite) vertex set V and a collection E of non-empty subsets

of V . The rank of a hypergraph H = (V, E) is r(H) = maxe∈E |e|. A homomorphism from H1 = (V1, E1) into
H2 = (V2, E2) is a map φ : V1 → V2 for which φ(e) is an edge in H2 whenever e is an edge in H1. A bijective
homomorphism φ whose inverse is also a homomorphism is called an isomorphism. A hypergraph is simple if no
edge is contained in any other edge and each edge contains two or more vertices.

In what follows, we consider six hypergraph products�,
�× ,

�× , ˜×,
�

� , and
�

� . For each of these, the vertex set of
the product is the Cartesian product of the vertex sets of its factors. To be more precise, given two hypergraphs H1 =
(V1, E1) and H2 = (V2, E2) and some product � ∈ {�,

�× ,
�× , ˜×,

�

� ,
�

� }, then V (H1 � H2) = V (H1) × V (H2).
The edge sets of the various products are defined as follows.

Cartesian Product �
This is an immediate generalization of the standard Cartesian product of graphs. Its edges are

E(H1�H2) = {{x} × f | x ∈ V (H1), f ∈ E(H2)
}

∪ {

e × {y} | e ∈ E(H1), y ∈ V (H2)
}

.

There are several ways to generalize the direct product of graphs to a product of hypergraphs. Because we want
such products to coincide with the usual direct product when the factors have rank 2 (and are therefore graphs) it
is necessary to impose some rank restricting conditions on the edges. This can be accomplished in different ways
and leads to different variants of the direct and strong graph products, respectively.
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Minimal Rank Preserving Direct Product
�×

Given e1 ∈ E1 and e2 ∈ E2, let r−
e1,e2 = min{|e1|, |e2|}. The edge set of this product is defined as

E(H1
�× H2) :=

{

e ∈
(

e1 × e2
r−
e1,e2

)

| ei ∈ Ei and |pi (e)| = r−
e1,e2 , i = 1, 2

}

.

The edges are thus the subsets e ⊆ e1 × e2 (with ei ∈ Ei ) for which both projections pi : e → ei are injective
and at least one is surjective.

Maximal Rank Preserving Direct Product
�×

Given e1 ∈ E1 and e2 ∈ E2, let r+
e1,e2 = max{|e1|, |e2|}. The edge set of this product is defined as

E(H1
�× H2) :=

{

e ∈
(

e1 × e2
r+
e1,e2

)

| ei ∈ Ei and pi (e) = ei , i = 1, 2

}

.

The edges are thus the subsets e ⊆ e1 × e2 (with ei ∈ Ei ) for which both projections pi : e → ei are surjective
and at least one is injective.

Non-Rank-Preserving Direct Product ˜×

E(H1˜×H2) := {{(x, y)} ∪ (

(e\{x}) × ( f \{y})) | x ∈ e ∈ E1; y ∈ f ∈ E2
}

.

The strong product of graphs is defined as E(G1�G2) = E(G1�G2)∪E(G1×G2). This leads to the following
generalizations to hypergraphs.

Normal Product
�

�

E(H1
�

� H2) = E(H1�H2) ∪ E(H1
�× H2).

Strong Product
�

�

E(H1
�

� H2) = E(H1�H2) ∪ E(H1
�× H2).

3 Associativity and Non-Associativity of Hypergraph Products

It is well known that the Cartesian product is associative [9]. In contrast, we will show below that none of the

products
�× , ˜× and

�

� is associative. Our counterexamples require the following lemma.

Lemma 1 If G and H are simple hypergraphs with r(G) = 2 and r(H) ≤ 3, then G
�× H = G˜× H.

Proof By definition, V (G
�× H) = V (G˜× H). We need to show that E(G

�× H) = E(G˜× H). Given ∗ ∈ {∼,�}
and edges e1, e2, let e1

∗× e2 denote the set E
(

(e1, {e1}) ∗× (e2, {e2})
)

. Then

E(G
∗× H) =

⋃

e1∈E(G),e2∈E(H)

(e1
∗× e2).

It suffices to show that e1
�× e2 = e1˜× e2 holds for all e1 ∈ E(G) and e2 ∈ E(H). Therefore, let e1 ∈ E(G) and

e2 ∈ E(H) and assume first |e2| = 2. Say e1 = {x1, y1} and e2 = {x2, y2}. Then
e1

�× e2 = {{(x1, x2), (y1, y2)}, {(x1, y2), (y1, x2)}
} = e1˜× e2.
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Now suppose |e2| = 3, say e2 = {x2, y2, z2}. Then

e1
�× e2 = {{(x1, x2), (x1, y2), (y1, z2)}, {(x1, x2), (y1, y2), (y1, z2)},

{(x1, x2), (y1, y2), (x1, z2)}, {(y1, x2), (x1, y2), (x1, z2)},
{(y1, x2), (x1, y2), (y1, z2)}, {(y1, x2), (y1, y2), (x1, z2)}

} = e1˜× e2.

Thus the assertion follows. 	


Now we present a counterexample showing that none of the products
�× , ˜× and

�

� is associative.
Counter example Consider the two hypergraphs G = ({a, b}, {{a, b}}) and H = ({x, y, z}, {{x, y, z}}). For � ∈
{�× , ˜× ,

�

� }, we claim G� (G� H) � (G�G)� H . Put e = {(a, (a, x)), (a, (b, y)), (b, (b, z))}. Note that e is an
edge of G

�× (G
�× H), and hence also of G

�

� (G
�

� H). However, the set {((a, a), x), ((a, b), y), ((b, b), z)} is not
an edge in (G

�

� G)
�

� H , thus also not in (G
�× G)

�× H , because {(a, a), (a, b), (b, b)} is neither an edge inG �

� G

nor in G
�× G. Thus the map (g, (g′, h)) �→ ((g, g′), h) is not an isomorphism G

�× (G
�× H) → (G

�× G)
�× H ,

nor is it an isomorphism G
�

� (G
�

� H) → (G
�

� G)
�

� H . Moreover, the following argument shows there is no
isomorphism at all.

It is shown in [7] that the number of edges in H1
�× H2 is

|E(H1
�× H2)| =

∑

e1∈E1,e2∈E2

(min{|e1|, |e2|})!Smax{|e1|,|e2|},min{|e1|,|e2|},

where Sn,k = 1
k!

∑k
j=0(−1)k− j

(k
j

)

jn is a Stirling number of the second kind. Furthermore,

|E(H1
�

� H2)| = |E(H1
�× H2)| + |E(H1�H2)|

= |E(H1
�× H2)| + |V (H1)||E(H2)| + |E(H1)||V (H2)|.

Using this, we see that |E(G
�× (G

�× H))| = 36 
= 12 = |E((G
�× G)

�× H)| and |E(G
�

� (G
�

� H))| = 82 
=
58 = |E((G

�

� G)
�

� H)|. Thus G �× (G
�× H) � (G

�× G)
�× H and G

�

� (G
�

� H) � (G
�

� G)
�

� H .

Moreover, Lemma 1 implies G˜× (G˜× H) = G
�× (G

�× H) 
= (G
�× G)

�× H = (G˜×G)˜× H .

The remainder of this contribution proves that the direct product
�× and the normal product

�

� are associative.
To our knowledge, these results have not yet appeared in the literature.

Proposition 2 The direct product
�× is associative.

Proof Let H1 = (V1, E1), H2 = (V2, E2), and H3 = (V3, E3) be hypergraphs and consider the map ψ :
V

(

H1
�× (H2

�× H3)
) → V

(

(H1
�× H2)

�× H3
)

defined as (x, (y, z)) �→ ((x, y), z). We will show that ψ is an
isomorphism. Clearly ψ is bijective. Hence it remains to show the isomorphism property, that is, e is an edge in

H1
�× (H2

�× H3) if and only if ψ(e) is an edge in (H1
�× H2)

�× H3. Let e = {((x1, y1), z1), . . . , ((xr , yr ), zr )} be
an edge in (H1

�× H2)
�× H3. There are two cases that can occur.

First, {z1, . . . , zr } is an edge in H3 and {(x1, y1), . . . , (xr , yr )} is therefore a subset of an edge in H1
�× H2. Hence

{x1, . . . , xr } and {y1 . . . , yr }must be subsets of edges in H1 and H2, respectively. But then {(y1, z1), . . . , (yr , zr )} is
an edge in H2

�× H3, which implies that ψ(e) = {(x1, (y1, z1)), . . . , (xr , (yr , zr ))} is an edge in H1
�× (H2

�× H3).

Second, {(x1, y1), . . . , (xr , yr )} is an edge in H1
�× H2 and {z1, . . . , zr } is a subset of an edge in H3. Then

{x1, . . . , xr } is an edge in H1 and {y1 . . . , yr } is a subset of an edge in H2, or vice versa. In the first case

{(y1, z1), . . . , (yr , zr )} is a subset of an edge in H2
�× H3, hence ψ(e) is an edge in H1

�× (H2
�× H3), and in

the second case {(y1, z1), . . . , (yr , zr )} is an edge in H2
�× H3 and thus ψ(e) is an edge in H1

�× (H2
�× H3).
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This implies that if e is an edge in (H1
�× H2)

�× H3, then ψ(e) is an edge in H1
�× (H2

�× H3). The converse

follows analogously. Thus (H1
�× H2)

�× H3 ∼= H1
�× (H2

�× H3). 	

Proposition 3 The normal product

�

� is associative.

Proof As in the previous proof, consider the bijection ψ : V (

(H1
�

� H2)
�

� H3
) → V

(

H1
�

� (H2
�

� H3)
)

defined
as ((x, y), z) �→ (x, (y, z)). We claim this is an isomorphism.

Let p1,2 be the projection from (H1 � H2) � H3 onto H1 � H2, defined by p1,2(((x, y), z)) = (x, y). Let
p2,3 be projection from H1 � (H2 � H3) to H2 � H3, whereas p j is the usual projection to Hj . By definition,

e = {((x1, y1), z1), . . . , ((xr , yr ), zr )} is an edge in (H1
�

� H2)
�

� H3 if and only if one of the following conditions
is satisfied:

(i) p1,2(e) = e1,2 ∈ E(H1
�

� H2) and |p3(e)| = 1,
(ii) p3(e) = e3 ∈ E(H3) and |p1,2(e)| = 1,

(iii) p1,2(e) = e1,2 ∈ E(H1
�

� H2) and p3(e) ⊆ e3 ∈ E(H3) and |e| = |e1,2| = |p1,2(e)| = |p3(e)| ≤ |e3|,
(iv) p3(e) = e3 ∈ E(H3) and p1,2(e) ⊆ e1,2 ∈ E(H1

�

� H2) and |e| = |e3| = |p3(e)| = |p1,2(e)| ≤ |e1,2|.
Condition (i) is equivalent to one of the following conditions holding:

(i a) p1(e) = p1(e1,2) = e1 ∈ E(H1) and |p2(e)| = |p2(e1,2)| = |p3(e)| = 1, or
(i b) p2(e) = p2(e1,2) = e2 ∈ E(H2) and |p1(e)| = |p1(e1,2)| = |p3(e)| = 1, or
(i c) p1(e) = p1(e1,2) = e1 ∈ E(H1) and p2(e) = p2(e1,2) ⊆ e2 ∈ E(H2) and |e| = |e1| = |p1(e)| = |p2(e)| ≤

|e2| and |p3(e)| = 1, or
(i d) p2(e) = p2(e1,2) = e2 ∈ E(H2) and p1(e) = p1(e1,2) ⊆ e1 ∈ E(H1) and |e| = |e2| = |p2(e)| = |p1(e)| ≤

|e1| and |p3(e)| = 1.

Condition (iii) is equivalent to one of the following conditions holding:

(iii a) p1(e) = p1(e1,2) = e1 ∈ E(H1) and |p2(e)| = |p2(e1,2)| = 1 and p3(e) ⊆ e3 ∈ E(H3) and |e| =
|p3(e)| ≤ |e3|, or

(iii b) p2(e) = p2(e1,2) = e2 ∈ E(H2) and |p1(e)| = |p1(e1,2)| = 1 and p3(e) ⊆ e3 ∈ E(H3) and |e| =
|p3(e)| ≤ |e3|, or

(iii c) p1(e) = p1(e1,2) = e1 ∈ E(H1) and p2(e) = p2(e1,2) ⊆ e2 ∈ E(H2) and |e| = |e1| = |p1(e)| = |p2(e)| ≤
|e2| and p3(e) ⊆ e3 ∈ E(H3) and |e| = |p3(e)| ≤ |e3|, or

(iii d) p2(e) = p2(e1,2) = e2 ∈ E(H2) and p1(e) = p1(e1,2) ⊆ e1 ∈ E(H1) and |e| = |e2| = |p2(e)| = |p1(e)| ≤
|e1| and p3(e) ⊆ e3 ∈ E(H3) and |e| = |p3(e)| ≤ |e3|.

Condition (iv) is equivalent to one of the following conditions holding:

(iv a) p3(e) = e3 ∈ E(H3) and p1(e) = p1(p1,2(e)) ⊆ e1 ∈ E(H1) and |p2(e)| = |p2(p1,2)(e)| = 1 and
|e| = |p3(e)| = |e3| = |p1(e)| ≤ |e1|, or

(ivb) p3(e) = e3 ∈ E(H3) and p2(e) = p2(p1,2(e)) ⊆ e2 ∈ E(H2) and |p1(e)| = |p1(p1,2)(e)| = 1 and
|e| = |p3(e)| = |e3| = |p2(e)| ≤ |e2|, or

(iv c) p3(e) = e3 ∈ E(H3) and p1(e) = p1(p1,2(e)) ⊆ e1 ∈ E(H1) and p2(e) = p2(p1,2(e)) ⊆ e2 ∈ E(H2) and
|e| = |p3(e)| = |e3| = |p1(e)| = |p2(e)| ≤ mini=1,2 |ei |.

Then Condition (i a) implies the following condition:

(I) p1(e) = e1 ∈ E(H1) and |p2,3(e)| = 1.

Conditions (i b), (ii), (iii b) and (ivb) each imply the following condition:

(II) |p1(e)| = 1 and p2,3(e) = e2,3 ∈ E(H2
�

� H3).
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Conditions (i c), (iii a) and (iii c) each imply the following condition:

(III) p1(e) = e1 ∈ E(H1) and p2,3(e) ⊆ e2,3 ∈ E(H2
�

� H3) and |e| = |e1| = |p1(e)| = |p2,3(e)| ≤ |e2,3|.
Conditions (i d), (iii d), (iv a) and (ivc) each imply the following condition:

(IV) p1(e) ⊆ e1 ∈ E(H1) and p2,3(e) = e2,3 ∈ E(H2
�

� H3) and |e| = |e2,3| = |p2,3(e)| = |p1(e)| ≤ |e1|.
By definition of the normal product, if any of the Conditions (I)–(IV) are satisfied, then ψ(e) =

{(x1, (y1, z1)), . . . , (xr , (yr , zr ))} is an edge in H1
�

� (H2
�

� H3). It follows that ψ is a homomorphism. In the
same way, the inverse (x, (y, z)) �→ ((x, y), z) is also a homomorphism. 	
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