
On uniqueness of prime bipartite factors of graphs

Richard H. Hammack

Department of Mathematics and Applied Mathematics
Virginia Commonwealth University

Richmond, VA 23284, USA

Abstract

It has long been known that the class of connected nonbipartite graphs (with
loops allowed) obeys unique prime factorization over the direct product of
graphs. Moreover, it is known that prime factorization is not necessarily
unique in the class of connected bipartite graphs.

But any prime factorization of a connected bipartite graph has exactly one
bipartite factor. Moreover, empirical evidence suggests that any two prime
factorings of a given connected bipartite graph have isomorphic bipartite
factors. This prompts us to conjecture that among all the different prime
factorings of a given connected bipartite graph, the bipartite factor is always
the same.

The present paper proves that the conjecture is true for graphs that have
a K2 factor. (Even in this simple case, the result is surprisingly nontriv-
ial.) Further, we indicate how to compute all possible prime factorings of
such a graph. In addition, we show how the truth of the conjecture (in gen-
eral) would lead to a method of finding all distinct prime factorings of any
connected bipartite graph.

To accomplish this, we prove the following preliminary result, which is
the main technical result of the paper: Suppose A × B is connected and
bipartite, and B is the bipartite factor. If A × B admits an involution that
reverses partite sets, then B also admits such an involution.
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1. Introduction

We assume our reader is familiar with graph products, but to fix notation
and terminology we review the main definitions here. For a survey, see [3].

Let Γ be the set of (isomorphism classes of) graphs without loops; thus
Γ ⊂ Γ0, where Γ0 is the set of graphs with loops allowed. The direct product
of graphs A,B ∈ Γ0 is the graph A×B with vertices V (A)×V (B) and edges

E(A×B) = {(a, b)(a′, b′) | aa′ ∈ E(A) and bb′ ∈ E(B)}.
Figure 1 shows a typical example. The direct product is commutative and as-
sociative in the sense that the maps (a, b) 7→ (b, a) and (a, (b, c)) 7→ ((a, b), c)
are isomorphisms A×B ∼= B×A and A×(B×C) ∼= (A×B)×C, respectively.

Further, if K∗1 denotes a vertex on which there is a loop, then K∗1×A ∼= A
for any graph A, so K∗1 is the unit for the direct product. A nontrivial graph
G ∈ Γ0 is prime over × if for any factoring G = A×B into graphs A,B ∈ Γ0

it follows that one of A or B is K∗1 and the other is G.
A consequence of a fundamental result by McKenzie [7] is that every con-

nected nonbipartite graph in Γ0 factors over × uniquely into primes. Specif-
ically, if G = A1 ×A2 × · · · ×Ak and G = B1 ×B2 × · · · ×B` are two prime
factorings of a connected nonbipartite graph G, then k = ` and Bi

∼= Aπ(i)

for some permutation π of {1, 2, . . . , k}. McKenzie’s paper involves general
relational structures; for purely graph-theoretical proofs of unique prime fac-
torization, see Imrich [5], or [3] for a more recent proof.

But if G is bipartite, its prime factorization may not be unique. Figure 2
illustrates this. It shows a graph G with prime factorings G = A × B and
G = A′ × B with A 6∼= A′. Figure 3 shows another example, one pointing to
the fact that the number of prime factors may vary with the factorization.

B
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1

Figure 1: Direct product of graphs
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Figure 2: Two prime factorings G = A×B and G = A′×B of a bipartite graph G, with a
common prime bipartite factor B. (The products are indeed isomorphic: The right can be
transformed to the left by transposing the two black vertices and the two gray vertices.)

Let us examine factorings of bipartite graphs in more detail. An oft-used
theorem by Weichsel states the following: Let A and B be connected graphs.
Then A×B is connected if and only if at least one of A or B is not bipartite;
if both A and B are bipartite, then A × B has exactly two components.
Moreover, A × B is bipartite if and only if at least one factor is bipartite.
(See Theorem 5.9 of [3] for a proof of Weichsel’s theorem.)

It follows that if a connected bipartite graph G has a prime factoring
G = A1 × A2 × · · · × Ak, then exactly one prime factor is bipartite. This is
borne out in Figures 2 and 3. But notice that, in each example, although the
prime factorings of G are different, the bipartite factor B is the same. These
examples, plus additional evidence not presented here, prompt a conjecture.

Conjecture 1. Given two prime factorings of a connected bipartite graph,
the prime bipartite factors are isomorphic. In other words, the prime bipartite
factor in a factoring of a connected bipartite graph is unique.

The purpose of this paper is to prove that this conjecture is true for any
graph that has a bipartite factor of K2. That is, we will show that if a
connected bipartite graph has a prime factoring that contains a K2 factor,
then any prime factoring of this graph has a K2 factor. This result appears
to be surprisingly nontrivial, but we hope that the proof presented here will
suggest a proof of the conjecture in general.
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Figure 3: Two prime factorings with common bipartite factor is K2.

In fact, we will prove slightly more than the uniqueness of a K2 factor.
Given any connected graph with a K2 factor, we will indicate how to find all
prime factorings of the graph.

2. Main Results

We now outline the proof of our main result: for any connected bipartite
graph, if one prime factoring has bipartite factorK2, then any prime factoring
of the graph has bipartite factor K2. Our proof will hinge on the following
lemma. Its origins are unclear; it has been reproved many times.

Lemma 1. A connected bipartite graph B has a factoring B ∼= H × K2 in
Γ0 if and only if B admits an involution (i.e. an automorphism of order 2)
that interchanges its partite sets.

Proof. Let V (K2) = {0, 1}. If B ∼= H ×K2, then there is an involution of
H ×K2 defined as (x, 0) 7→ (x, 1) and (x, 1) 7→ (x, 0), and this interchanges
the partite sets V (H)× {0} and V (H)× {1}.

Conversely, let there be an involution σ : B → B interchanging partite
sets B0 and B1 of B. Then there is a partition Σ = {{x, σ(x)} | x ∈ V (B)}
of V (B) consisting of two-element sets fixed by σ. Form the quotient B/Σ,
with vertex set Σ and where {x, σ(x)} is adjacent to {y, σ(y)} precisely if
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some edge of B joins them. It is straightforward to check that the map
f : B → B/Σ×K2 defined as

f(x) =

{
({x, σ(x)}, 0) if x ∈ B0,
({x, σ(x)}, 1) if x ∈ B1

is an isomorphism.

The following is the main technical result of this paper.

Theorem 1. Suppose A and B are connected graphs, and B is bipartite but
A is not. If A×B admits an involution that reverses its partite sets, then B
also admits an involution that reverses its partite sets.

To preserve continuity of exposition, we postpone the proof of Theorem 1.
Instead, we use Theorem 1 now to quickly reach our main objective:

Theorem 2. Suppose G is an arbitrary connected bipartite graph. If G has
a K2 factor, then the bipartite factor in any prime factoring of G is a K2.
In other words, if G ∼= A×B ∼= C ×K2, and B is prime and bipartite, then
B ∼= K2.

Proof. If G ∼= A × B ∼= C × K2, then A × B has an involution that
reverses its bipartition because C ×K2 does. By Theorem 1, B also admits
an involution that reverses its partite sets. Then B ∼= H ×K2, by Lemma 1.
As B is prime, it follows that H ∼= K∗1 , so B ∼= K2.

It remains to prove Theorem 1. The theorem may sound quite plausible,
but its proof is not a trivial matter. The next several sections recall some
machinery that will be needed in the proof. Section 3 reviews the idea of
the Cartesian product of graphs, and of prime factoring over this product.
Section 4 then discusses a certain equivalence relation R on the vertex set
of a graph. This leads to the notion of the Cartesian skeleton of a graph, in
Section 5. All of this is put to use in Section 6, where Theorem 1 is proved,
in essence by reducing factorization over the direct product to factorization
over the Cartesian product.

The concluding Section 7 explains how to find all prime factorings of a
given connected bipartite graph.
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3. The Cartesian Product

The proof of Theorem 1 will employ the Cartesian product of graphs.
The Cartesian product of graphs A,B ∈ Γ is the graph A2B with vertices
V (A)× V (B) and edges

E(A2B) = {(a, b)(a′, b′) | aa′ ∈ E(A) and b = b′, or a = a′ and bb′ ∈ E(B)}.

(See Figure 4.) The Cartesian product is commutative and associative in
the sense that A2B ∼= B2A and A2(B2C) ∼= (A2B)2C. Letting B + C
denote the disjoint union of graphs B and C, we also get the distributive law

A2(B + C) = A2B + A2C. (1)

Observe that this is true equality, rather than mere isomorphism.

A

B A2B

1

Figure 4: A Cartesian product of graphs.

Clearly K12A ∼= A for any graph A, so K1 is the unit for the Cartesian
product. A nontrivial graph G is prime over 2 if for any factoring G = A2B,
one of A or B is K1. Certainly every graph can be factored into (possibly
more than two) prime factors in Γ. Sabidussi and Vizing [8, 9] proved that
each connected graph has a unique prime factoring (in Γ), up to order and
isomorphism of the factors. More precisely, we have the following.

Theorem 3 (Theorem 6.8 of [3]). Let G,H ∈ Γ be isomorphic connected
graphs with prime factorings G = G12 · · ·2Gk and H = H12 · · ·2H`. Then
k = `, and for any isomorphism ϕ : G → H, there is a permutation π of
{1, 2, . . . , k} and isomorphisms ϕi : Gπ(i) → Hi for which

ϕ(x1, x2, . . . , xk) = (ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕk(xπ(k))).
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We emphasize that discussions of prime factorizations over 2 concern only
graphs in Γ. Indeed, the above theorem is false in the class Γ0. To see this,
let K∗2 be K2 with loops at each vertex, and note that K22K

∗
2
∼= K∗22K

∗
2

are distinct prime factorings of the square with loops at each vertex.
Theorem 3 invites us to identify each Hi with Gπ−1(i), yielding a corollary.

Corollary 1. If ϕ : G12 · · ·2Gk → H12 · · ·2Hk is an isomorphism, and
each Gi and Hi is prime, then the vertices of each Hi can be relabeled so that

ϕ(x1, x2, . . . , xk) = (xπ(1), xπ(2), . . . , xπ(k))

for some permutation π of {1, . . . , k}.

4. R-Thin Graphs

The notion of so-called R-thinness is an important issue in factorings over
the direct product. McKenzie [7] used this idea (in a somewhat more general
form), citing an earlier use by Chang [1]. To motivate this topic, notice that
in Theorem 3 any component function ϕi depends on only one variable xj.
This places stringent (and useful) restrictions on the isomorphism ϕ. The
corresponding result for the direct product is generally false without the
mild restriction of R-thinness (defined below). Indeed, in Figure 5 (left), the
transposition of vertices a2 and c2 is an isomorphism A× B → A× B that
is not of the form prescribed by Theorem 3.

This transposition is possible because a2 and c2 have the same neighbor-
hood. Evidently, then, vertices with identical neighborhoods complicate the
discussion of prime factorizations over the direct product. To overcome this
difficulty, one forms a relation R on the vertices of a graph. Two vertices x

a2 b2 c2

a1 b1 c1

a b c

2 {2}

1 {1}

{b} {a, c}

{b1} {a1, c1}

{b2} {a2, c2}

B B/R

A A/R

(A×B)/RA×B

1

Figure 5: Graphs A, B and A×C (left), and quotients A/R,B/R and (A×B)/R (right).
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and x′ of a graph G are in relation R, written xRx′, precisely if their open
neighborhoods are identical, that is, if NG(x) = NG(x′). It is a simple matter
to check that R is an equivalence relation on V (G). (For example, the equiv-
alence classes for A × B in Figure 5 are {b1}, {b2}, {a1, c1} and {a2, c2};
those of A are {a, c} and {b}, and those of B are {1} and {2}.)

Given a graph G, we define a quotient graph G/R (in Γ0) whose vertex
set is the set of R-equivalence classes of G, and for which two classes are
adjacent if they are joined by an edge of G. (And a single class carries a loop
provided that an edge of G has both endpoints in that class.) Figure 5 shows
quotients A/R, B/R and (A × B)/R. A graph G is called R-thin if all of
its R-equivalence classes contain just one vertex. In this case G/R ∼= G. In
Figure 5, B is R-thin. It is easily verified that G/R is R-thin for any G ∈ Γ0.

We note in passing that an analogue of Theorem 3 for the direct product
holds for R-thin nonbipartite graphs. See Theorem 8.15 of [3]. (More gen-
erally, McKenzie [7] proves that thin structures in a class Q, which contains
the nonbipartite connected graphs, have a “strict refinement property.” The
analogue of our Theorem 1 for nonbipartite graphs, and indeed the above-
mentioned Theorem 8.15 of [3], can be seen as consequences of this.)

Given x ∈ V (G) let [x] = {x′ ∈ V (G) | NG(x′) = NG(x)} denote the R-
equivalence class containing x. As the relation R is defined entirely in terms
of adjacencies, it is clear that given an isomorphism ϕ : G→ H we have xRy
in G if and only if ϕ(x)Rϕ(y) in H. Thus ϕ maps R-equivalence classes of G
to R-equivalence classes of H, and in particular ϕ([x]) = [ϕ(x)]. Thus any
isomorphism ϕ : G→ H induces an isomorphism ϕ̃ : G/R→ H/R defined as
ϕ̃([x]) = [ϕ(x)]. But an isomorphism ϕ̃ : G/R → H/R does not necessarily
imply that there is an isomorphism ϕ : G → H. (Consider G = P3 and
H = K2.) However, we do have the following result in this direction. The
straightforward proof can be found in Section 8.2 of [3].

Proposition 1. Given an isomorphism ϕ̃ : G/R→ H/R, with |X| = |ϕ̃(X)|
for each X ∈ V (G/R), there is also an isomorphism ϕ : G → H. (Any
such ϕ can be obtained from ϕ̃ by declaring that ϕ restricts to a bijection
X → ϕ̃(X) for each X.)

Figure 5 (right) suggests an isomorphism (A×B)/R→ A/R×B/R given
by [(v, w)] 7→ ([v], [w]). Indeed, this is a general principle, as is proved in
Section 8.2 of [3]. Moreover, the figure suggests [(v, w)] = [v]× [w] (as sets).
This too is true in general. Consequently, |[(v, w)]| = |[v]| · |[w]|. The proof
of our main theorem will employ these remarks.
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5. The Cartesian Skeleton

We now recall the definition of the Cartesian skeleton S(G) of an arbitrary
graph G in Γ0. The Cartesian skeleton S(G) is a graph on the vertex set
of G that has the property S(A × B) = S(A)2S(B) in the class of R-thin
graphs, thereby linking the direct and Cartesian products.

We construct S(G) as a certain subgraph of the Boolean square of G.
The Boolean square of a graph G is the graph Gs with V (Gs) = V (G) and
E(Gs) = {xy | NG(x) ∩NG(y) 6= ∅}. Thus, xy is an edge of Gs whenever G
has an x, y-walk of length two. For instance, if p ≥ 3, then Ks

p is Kp with a
loop added to each vertex. Also, Ks

2 = K∗1 +K∗1 and Ks
1 = K1. The left side

of Figure 6 shows graphs A,B and A×B (bold) together with their Boolean
squares As, Bs and (A×B)s (dotted).

If G has an x, y-walk W of even length, then Gs has an x, y-walk of length
|W |/2 on alternate vertices of W . Thus Gs is connected if G is connected
and has an odd cycle. (The presence of an odd cycle guarantees an even walk
between any two vertices of G.) On the other hand, if G is connected and
bipartite, then Gs has exactly two components, and their respective vertex
sets are the two partite sets of G.

We now show how to form S(G) as a certain spanning subgraph of Gs.
Given a factorization G = A × B, we say that an edge (a, b)(a′, b′) of Gs is

B

A

x′ x

z′ z y′ y

B

A

1

Figure 6: Left: Graphs A, B, A×B and their Boolean squares As, Bs and (A×B)s (dotted).
Right: Graphs A, B, A×B and their Cartesian skeletons S(A), S(B) and S(A×B) (dotted).
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Cartesian relative to the factorization A × B if either a = a′ and b 6= b′,
or a 6= a′ and b = b′. For example, in Figure 6 edges xz and zy of Gs are
Cartesian (relative to the factorization A × B), but edges xy and yy of Gs

are not Cartesian. Our goal is to form S(G) from Gs by removing the edges
of Gs that are not Cartesian, but we do this in a way that does not reference
the factoring A×B of G. We identify three intrinsic criteria for edges of Gs

that tell us if they may fail to be Cartesian relative to some factoring of G.
(Note that the symbol ⊂ means proper inclusion.)

(i) If xy is a loop (i.e. if x = y) then xy cannot be Cartesian.

(ii) In Figure 6 edge xy of Gs is not Cartesian, and there is a z ∈ V (G) with
NG(x)∩NG(y) ⊂ NG(x)∩NG(z) and NG(x)∩NG(y) ⊂ NG(y)∩NG(z).

(iii) In Figure 6 the edge x′y′ of Gs is not Cartesian, and there is a z′ ∈ V (G)
with NG(x′) ⊂ NG(z′) ⊂ NG(y′).

Our aim is to remove from Gs all edges that meet one of these criteria. We
package the above criteria into the following definition.

Definition 1. An edge xy of Gs is dispensable if x = y or there exists z ∈
V (G) for which both of the following statements hold.

(1) NG(x) ∩NG(y) ⊂ NG(x) ∩NG(z) or NG(x) ⊂ NG(z)⊂ NG(y),

(2) NG(y) ∩NG(x) ⊂ NG(y) ∩NG(z) or NG(y) ⊂ NG(z)⊂ NG(x).

Observe that the above statements (1) and (2) are symmetric in x and y.
Also, the second statement in (1) implies the first in (2), and the second in
(2) implies the first in (1). With this in mind, we note that if either (ii) or
(iii) above holds, then both conditions (1) and (2) in the definition hold.

Now we come to the main definition of this section.

Definition 2. The Cartesian skeleton of a graph G is the spanning subgraph
S(G) of Gs obtained by removing all dispensable edges from Gs.

The right side of Figure 6 is the same as its left side, except all dispensable
edges of As, Bs and (A× B)s are deleted. Thus the remaining dotted edges
are S(A), S(B) and S(A×B). Note that although S(G) was defined without
regard to the factorization G = A × B, we nonetheless have S(A × B) =
S(A)2S(B). The following proposition from [4] asserts that this always
holds for R-thin graphs.
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Proposition 2. If A,B are R-thin graphs without isolated vertices, then
S(A×B) = S(A)2S(B).

We emphasize that by S(A × B) = S(A)2S(B) we mean equality, not
mere isomorphism; the above graphs S(A×B) and S(A)2S(B) have identical
vertex and edge sets. As S(G) is defined entirely in terms of the adjacency
structure of G, we have the following immediate consequence of Definition 2.

Proposition 3. Any isomorphism ϕ : G→ H, as a map V (G)→ V (H), is
also an isomorphism ϕ : S(G)→ S(H).

We will also need some results concerning connectivity of Cartesian skele-
tons. The following result (which does not require R-thinness) is from [4].
(For another proof, see Chapter 8 of [3].)

Proposition 4. Suppose G is connected.

(i) If G has an odd cycle, then S(G) is connected.

(ii) If G is bipartite, then S(G) has two connected components. Their re-
spective vertex sets are the two partite sets of G.

6. The Proof of Theorem 1

We now prove Theorem 1, restated below for convenience.

Theorem 1. Suppose A and B are connected graphs, and B is bipartite but
A is not. If A×B admits an involution that reverses its partite sets, then B
also admits an involution that reverses its partite sets.

Proof. Assume the hypotheses, and say B has partite sets B0 and B1. Take
an involution ϕ : A × B → A × B that reverses the bipartition, that is, ϕ
interchanges V (A)×B0 and V (A)×B1. Say ϕ(v, w) = (ϕA(v, w), ϕB(v, w)).
As we will see, ϕ actually has a very simple expression. In what follows,
we will reduce to R-thin graphs so that we can apply the Cartesian skeleton
operator. We will then show that B/R admits an involution that reverses its
partite sets; from there we will argue that B does too.

As noted in Section 4, the map ϕ : A×B → A×B induces a map

ϕ̃ : (A×B)/R→ (A×B)/R,
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where ϕ̃([(v, w)] = [ϕ(v, w)] = [(ϕA(v, w), ϕB(v, w))]. Because (A× B)/R ∼=
A/R×B/R by the isomorphism [(a, b)] 7→ ([a], [b]), we can view ϕ̃ as a map

ϕ̃ : A/R×B/R → A/R×B/R
([v], [w]) 7→ ([ϕA(v, w)], [ϕB(v, w)]).

Now, A/R is connected and nonbipartite because any x,y-walk in the
connected graphA induces an [x],[y]-walk inA/R of the same length (possibly
with loops); and thus a closed odd walk in A induces a closed odd walk in
A/R. By definition of R, any R-equivalence class in B is clearly contained
entirely in one of the partite sets B0 or B1. Thus B/R is connected and
bipartite. It follows that the above map ϕ̃ : A/R×B/R→ A/R×B/R is a
bipartition-reversing involution on R-thin graphs.

Applying the Cartesian skeleton operator and using Proposition 3, this is
an involution

ϕ̃ : S(A/R×B/R)→ S(A/R×B/R),

and we get the upper-most square in the following Commutative Diagram (2).
The remainder of the diagram proceeds as follows. Proposition 2 applied to
the second line yields the third line. (The vertical double lines indicate
equality and the horizontal arrows are involutions.)

A/R×B/R A/R×B/R

S(A/R×B/R) S(A/R×B/R)

S(A/R)2S(B/R) S(A/R)2S(B/R)

S(A/R)2(B′0 +B′1) S(A/R)2(B′0 +B′1)

S(A/R)2B′0 + S(A/R)2B′1 S(A/R)2B0 + S(A/R)2B′1

ϕ̃

ϕ̃

ϕ̃

ϕ̃

ϕ̃

S S

(2)

For the fourth line, note that the boolean square of the bipartite graph B/R
consists of two connected components whose respective vertex sets are the
partite sets of B/R. In turn, the skeleton S(B/R) consists of two connected
components B′0 and B′1 whose respective vertex sets are the partite sets of
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B/R. (See Proposition 4.) This gives the fourth line of Diagram (2). The
distributive property of 2 gives the bottom line.

Consider the involution ϕ̃ on the bottom line of Diagram (2). The re-
strictions of ϕ̃ to the two components S(A/R)2B′0 and S(A/R)2B′1 give us
two isomorphisms, as follows.

S(A/R)2B′1 S(A/R)2B′0

S(A/R)2B′0 S(A/R)2B′1

ϕ̃

ϕ̃
(3)

Because ϕ̃ is an involution, these two restrictions are inverses of one another.
Make note that as V (A/R) = V (S(A/R)) and V (B/R) = V (B′0) + V (B′1),
the map ϕ̃ is an involution of both A/R×B/R and S(A/R)2S(B/R).

Identify S(A/R)2B′1 with its prime factoring over the Cartesian product,
by the following isomorphism:

S(A/R)2B′1 → A12A22 · · ·2Ak 2 B112B122 · · ·2B1`

(a, b) 7→ (a1, a2, . . . , ak, b11, b12, . . . , b1`).
(4)

Here the Ai are the prime factors of S(A/R) and the B1i are the prime factors
of B′1. (Thus the ai are functions of vertices a ∈ V (S(A/R) and the b1i are
functions of vertices b ∈ B′1.) Although this is an isomorphism between two
graphs, to avoid unnecessary notation we view it as a relabeling of the vertices
of S(A/R)2B′1 by the association (a, b) 7→ (a1, a2, . . . , ak, b11, b12, . . . , b1`).
We thus identify the two graphs in the isomorphism (4).

Similarly, there is an identification

S(A/R)2B′0 = A12A22 · · ·2Ak 2 B012B022 · · ·2B0`

(a, b) 7→ (a1, a2, . . . , ak, b01, b02, . . . , b0`).
(5)

By unique prime factoring over 2, the B0i are isomorphic to the B1i, up to
order. Combining isomorphisms (3), (4) and (5), we have:

S(A/R)2B′1 (A12A22 · · ·2Ak) 2 (B112B122 · · ·2B1`)

S(A/R)2B′0 (A12A22 · · ·2Ak) 2 (B012B022 · · ·2B0`).

ϕ̃ (6)

13



By Corollary 1, we can identify the prime factors in the upper row of
Diagram (6) with those in the bottom row, so that the involution ϕ̃ simply
permutes its arguments by some permutation π (in this case, of order 2).
Now, π may send some prime factors of S(A/R) (on the bottom row) to
factors of B′1 (on the upper row). Let X be the product of the factors of
S(A/R) that π sends to factors of B′1. Then there is a corresponding product
X of factors of B′0 that π sends to factors of S(A/R). Using commutativity
of the Cartesian product, we regroup the prime factors so that S(A/R) ∼=
AA2X and B′0

∼= B′1
∼= X2BB. (Thus AA stands for the product of factors

of S(A/R) sent to S(A/R), and BB stands for the product of factors of B′0
sent to B′1.) This scheme is indicated in Diagram (7) below.

S(A/R)2B′1

S(A/R)2B′0

AA 2 X 2 X 2BB

AA 2 X 2 X 2BB

ϕ̃ ϕ̃

=

=

S(A/R)︷ ︸︸ ︷ B′1︷ ︸︸ ︷

︸ ︷︷ ︸
S(A/R)

︸ ︷︷ ︸
B′0

(7)

We have now relabeled the vertices of S(A/R) with ordered pairs (a, x) ∈
V (AA2X), and those of B′0 and B′1 with pairs (x, b) ∈ V (X2BB), respec-
tively. With this labeling, the involution ϕ̃ has the particularly simple form

ϕ̃((a, x), (y, b)) = ((a, y), (x, b)). (8)

Recall that V (A/R) = V (S(A/R)), and that the two partite sets of
B/R are the sets V (B′0) and V (B′1). Thus A/R × B/R has partite sets
V (S(A/R))× V (B′0) and V (S(A/R))× V (B′1), that is, these partite sets are
the vertex sets of the two graphs on the left column of Diagram (7). In
this diagram, the vertices of one partite set of A/R × B/R are labeled with
vertices of (AA2X)2(X2BB), and these appear at the top of the diagram.
Likewise, the vertices of the other partite set are also labeled by the vertices
of (AA2X)2(X2BB), and they appear on the bottom of the diagram. Fur-
ther, one partite set of B/R is labeled as V (B′1) = V (X2BB), and the other
partite set is labeled as V (B′0) = V (X2BB).

There is some danger of confusion here because each vertex (y, b) ∈
V (X2BB) simultaneously labels both a vertex in the partite set V (B′0) of
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B/R and a vertex in the other partite set V (B′1). As a bookkeeping device,
when (y, b) denotes a vertex in V (B′1), we write is as (y, b). If it denotes a
vertex in V (B′0), then we write it simply as (y, b). Thus the bar has no sig-
nificance other than an indication of which partite set the pair (y, b) belongs
to. But we can regard the map (y, b) 7→ (y, b) as a bijection from one partite
set of B/R to the other partite set. With this slight adjustment of notation,
the involution (8) can be updated as

ϕ̃((a, x), (y, b)) =
(

(a, y), (x, b)
)
, and

ϕ̃
(

(a, x), (y, b)
)

= (a, y), (x, b)).
(9)

Also define the following order-2 permutation µ : V (B/R) → V (B/R)
that reverses the partite sets of B/R:

µ((y, b)) = (y, b) and µ
(

(y, b)
)

= (y, b).

We next show that µ is an automorphism (hence involution) of B/R.
Suppose (y, b)(y′, b′) ∈ E(B/R). Applying µ yields the pair (y, b)(y′, b′), and
we must show that this is also an edge of B/R.

Select an edge (a, x)(a′, x′) ∈ E(A/R). We thus have

((a, x), (y, b))
(

(a′, x′), (y′, b′)
)
∈ E(A/R×B/R). (10)

Applying the involution ϕ̃ (Equation (9)) yields(
(a, y), (x, b)

)
((a′, y′), (x′, b′)) ∈ E(A/R×B/R). (11)

From this, (a, y)(a′, y′) ∈ E(A/R). Because (y, b)(y′, b′) ∈ E(B/R), we get

((a, y), (y, b))
(

(a′, y′), (y′, b′)
)
∈ E(A/R×B/R). (12)

Applying ϕ̃ to this,(
(a, y), (y, b)

)
((a′, y′), (y′, b′)) ∈ E(A/R×B/R). (13)

From this last edge of A/R×B/R, we see that indeed (y, b)(y′, b′) ∈ E(B/R),
and hence µ is a bijective homomorphism from B/R to itself. As µ = µ−1,
we see that µ is an involution of B/R (that reverses partite sets).
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Now that we have produced an involution µ of B/R that interchanges
partite sets, we will lift it to an involution of B. Recall that we began the
proof with an involution ϕ : A × B → A × B that reversed partite sets of
A × B. This induced an involution ϕ̃ : (A × B)/R → (A × B)/R, where
ϕ̃([(v, w)]) = [ϕ(v, w)] = [(ϕA(v, w), ϕB(v, w))]. By the isomorphism

(A×B)/R → A/R×B/R
[(v, w)] 7→ ([v], [w]),

this became the involution

ϕ̃ : A/R×B/R → A/R×B/R
([v], [w]) 7→ ([ϕA(v, w)], [ϕB(v, w)]).

We then relabeled vertices as [v] = (a, x) and [w] = (y, b) or (y, b). (So (a, x)
and (y, b) actually denote R-equivalence classes.) Under this relabeling, ϕ̃
became

ϕ̃((a, x), (y, b)) =
(

(a, y), (x, b)
)
.

Regard the equivalence class [(v, w)] ∈ V ((A × B)/R) as a subset of
V (A × B), and recall the remarks in Section 4. Then [(v, w)] = [v] × [w] =
(a, x)×(y, b), where × indicates the Cartesian product of sets. The involution
ϕ sends the subset [(v, w)] = (a, x) × (y, b) of the partite set B0 of A × B
bijectively to [ϕ(v, w)] = [(ϕA(v, w), ϕB(v, w))] = [ϕA(v, w)] × [ϕB(v, w)] =
(a, y) × (x, b) in the other partite set of A × B. Thus |(a, x) × (y, b)| =
|(a, y)× (x, b)|, so

|(a, x)| · |(y, b)| = |(a, y)| ·
∣∣∣(x, b)∣∣∣ .

For x = y, this is

|(a, y)| · |(y, b)| = |(a, y)| ·
∣∣∣(y, b)∣∣∣ .

From this, |(y, b)| =
∣∣∣(y, b)∣∣∣ = |µ(y, b)|. Therefore our involution µ of B/R

preserves the cardinalities of R-equivalence classes that make up the vertices
of B/R. By Proposition 1, we can thus extend it to a (partition-reversing)
involution of B by declaring it to be a bijection on the R-equivalence classes
of B/R. This completes the proof.

This also completes the proof of Theorem 2 in Section 2.
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7. All Prime Factorings

As noted in the introduction, connected bipartite graphs do not have
unique prime factorings. However, we have proved that any factor of K2 is
unique. We now describe how to find all prime factorings of a connected
graph that has a K2 factor. The results of this section hinge on the ideas
laid out in the article [2], and summarized here.

In what follows, let G ∼= A×K2 be a connected graph with K2 as a prime
factor. Then G is bipartite and admits an involution that reverses its partite
sets X and Y , because A×K2 these properties.

Of course there may be many involutions σ that interchange X and Y .
Given such a σ, we define the graph Gσ as follows.

V (Gσ) = {{x, σ(x)} | x ∈ V (G)}
E(Gσ) = {{x, σ(x)}{y, σ(y)} | xy ∈ E(G)}.

As in the proof of Lemma 1, we have G ∼= Gσ×K2. Because G is connected,
it follows that Gσ is connected and nonbipartite, for otherwise G = Gσ ×K2

would have more than one component.
Let RI(G) be the set of involutions of G that reverse its bipartition.

The group Aut(G) acts on RI(G) by conjugation. Choose representatives
σ1, σ2, . . . , σk of the conjugacy classes. As proved in [2], the set of isomor-
phism classes of graphs A for which G ∼= A×K2 is precisely

A = Gσ1 , Gσ2 , . . . , Gσk . (14)

Thus the distinct factorings of G as G ∼= A×K2 are precisely

Gσ1 ×K2, Gσ2 ×K2, . . . , G
σk ×K2.

The results of the present paper imply that the K2 factor is unique; therefore
any prime factoring of G is a refinement of one of the above Gσi × K2 by
a prime factoring of Gσi . Since the class of connected nonbipartite graphs
obeys unique factorization (as noted in the introduction), each Gσi has a
distinct prime factorization. These factorizations can be found (say) with
Algorithm 24.7 in Chapter 24 of [3]. Carrying out these factorizations for
each Gσi in List (14) above, we obtain every distinct prime factoring of G.

In fact, if Conjecture 1 of Section 1 is true, then the above reasoning can
be extended to compute every prime factoring of any connected bipartite
graph. To see this, we will use a standard result due to Lovász [6].
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Proposition 5. If A×B ∼= A′ ×B and there is a homomorphism K → B,
then A×K ∼= A′ ×K.

As any nontrivial bipartite graph B admits homomorphisms K2 → B and
B → K2, it follows that A×B ∼= A′ ×B if and only if A×K2

∼= A′ ×K2.
Now suppose Conjecure 1 is true. Let G be any connected bipartite graph,

and say that B is its unique prime bipartite factor. Select a factoring

G ∼= A×B

of G, and let
H = A×K2.

By the previous paragraph, the various factorings G ∼= G′ × B are in one-
to-one correspondence with the factorings H ∼= G′ ×K2. As above, we can
compute from H ∼= G′ ×K2 all G′ and their prime factorings. Appending B
to each of these factorings, we obtain all prime factorings of G. (Observe that
to carry out this process, it is necessary to first find a factoring G ∼= A×B.)
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