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Abstract A digraph C is called a zero divisor if there exist non-isomorphic digraphs
A and B for which A x C = B x C, where the operation is the direct product. In other
words, C being a zero divisor means that cancellation property AXC = BxC = A =
B fails. Lovasz proved that C is a zero divisor if and only if it admits a homomorphism
into a disjoint union of directed cycles of prime lengths. Thus any digraph C that is
homomorphically equivalent to a directed cycle (or path) is a zero divisor. Given such
a zero divisor C and an arbitrary digraph A, we present a method of computing all
solutions X to the digraph equation A x C = X x C.
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1 Introduction

The article [1] solves the following variation of the cancellation problem for the direct
product of graphs: Given graphs A and C, find all graphs B for which A x C = B x C.

This work extends and generalizes some earlier results by R. Hammack and K. Toman [Cancellation of
direct products of digraphs, Discusiones Mathematicae Graph Theory, 30 (2010) 575-590].
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The analogous problem where A, B and C are digraphs presents some special
challenges, and a complete solution is not yet realized. The article [2] solves the
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Fig.1 Some digraphs
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problem for those digraphs C that are homomorphically equivalent to a single arc Fz
(Such C are of special interest because they are the most “pathological” of all zero
divisors, in a sense that will be explained in Sect. 3 below.)

The current article solves the problem for a more general class of digraphs C, namely
those that are homomorphically equivalent to directed cycles or paths of arbitrary
lengths. Specifically, given adigraph A and adigraph C thatis homomorphically equiv-
alent to adirected path or cycle, we classify those digraphs B for which AxC = BxC.

We first fix the notation by recalling some relevant concepts. A digraph A is abinary
relation E'(A) on a finite vertex set V (A), that is, a subset E(A) C V(A) x V(A). For
brevity, an ordered pair (a, a’) € E(A) is denoted aa’, and is visualized as an arrow
pointing from a to a’. Elements of E(A) are called arcs. A reflexive arc aa is called a
loop. A graph is a digraph that is symmetric (as a relation). We use the usual notation
for graphs; in particular K, is the complete graph on n vertices.

Given a positive integer n, the directed cycle C, is the digraph with vertices
{0,1,2,...,n—1}andarcs {01, 12,23, ..., (n — 1)0}. Thus a consists of a single
vertex with a loop, and 5; = K>. The directed path F,: is C_‘,: with one arc removed.
Figure 1 shows some of these digraphs.

We denote the condition of X being a sub-digraph of A as X € A. A digraph A is
strongly connected if for every pair a, a’ of its vertices there is a sub-digraph F),, CA
beginning at a and ending at a’. A digraph is connected if any a and a’ are joined
by a path, each arc of which has arbitrary orientation. The connected components
(respectively strongly connected components) of A are the maximal sub-digraphs of
A that are connected (respectively strongly connected).

If A and B are digraphs, then A 4+ B denotes the disjoint union of A and B. The
disjoint union of n copies of A is denoted nA. A homomorphism ¢ : A — B is a map
¢ : V(A) — V(B) forwhichaa’ € E(A)implies ¢(a)p(a’) € E(B).Digraphs A and
B are homomorphically equivalent if there are homomorphisms A — B and B — A.

The direct product of two digraphs A and B is the digraph A x B whose vertex
set is the Cartesian product V(A) x V(B) and whose arcs are the pairs (a, b)(a’, b’)
with aa’ € E(A) and bb' € E(B). We assume the reader to be familiar with direct
products and homomorphisms. For standard references see [3] and [4].

2 Cancellation Laws

Lovész [5] defines a digraph C to be a zero divisor if there exist non-isomorphic
—_
digraphs A and B for which A x C = B x C. For example, Fig. 2 shows that C3 is a
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Fig. 2 Example of a zero divisor
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zero divisor: If A = C3 and B = 3Cy, thenclearly A Z B,yet A x C3 = B x C3 (both
%
products are isomorphic to 3C3). Here is the main result concerning zero divisors.

Theorem 1 (Lovasz [5], Theorem 8) A digraph C is a zero divisor if and only if there
is a homomorphism ¢ : C — Cp, + Cp, + Cpy + -+ + Cp, for prime numbers
P1, P25 -« Dk-

Thus, in particular, C,, with n > 1 is a zero divisor (even if n is not prime, there is
an %-fold homomorphic cover ¢ : C, — C), for any prime divisor p of n). Also each
— - =
P, is a zero divisor, for clearly there is a homomorphism P, — C), for any n and p.

Theorem 1 can be regarded as a cancellation law for the direct product, as it gives
exact conditions on C under which A x C = B x C necessarily implies A = B. By

contrast, the present article focuses on ways that cancellation can fail. Given a digraph
A and a natural number n, we will describe a method of finding all digraphs B for

which A x P, = B x P,, as well as all digraphs B for which A x C;, = B x C,,. Further,

given a digraph C that is homomorphically equivalent to F)n or C_‘; we describe how
to find all B for which A x C = B x C.
Theorem 1 characterizes zero divisors as those digraphs C that admit a homomor-

phism C — C—P)l + C—)p2 +-o C_)Pk' If C is connected, such a homomorphism has an
image in just one directed cycle, so it can be regarded as a homomorphism C — (7;
Often there are only finitely many p for which homomorphisms C — C_‘; exist. But for
some C it may happen that there is a homomorphism C — C_',), for each prime number
p. Then, by taking p > |V(C)|, we see that C admits a homomorphism C — FZ
for some n. Conversely, since there are homomorphisms F),, — C_’; for any n and p,

the existence of a homomorphism C — F)n guarantees a homomorphism C — C_‘;
for every p. Therefore connected zero divisors C can be divided into two distinct and
mutually exclusive types: On one hand there are those that admit a homomorphism
C — Fn for some n (and thus a homomorphism C — C_'; for all p); on the other hand
there are those that admit homomorphisms C — C_‘; for only finitely many prime
numbers p.
— — —> —>

This suggests that the expressions A x P, = B x P, and A x C,, = B x C, are
of fundamental importance in the study of zero divisors, and motivates the results of
the present article.
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Fig. 3 Examples of permuted digraphs

Our methods will require the following theorems due to Lovész.

Theorem 2 (Lovasz [5], Theorem 6) Let A, B, C and D be digraphs. If A x C
= B x C and there is a homomorphism from D to C, then A x D = B x D.

Theorem 3 (Lovasz [5], Theorem 7) Let A, B, C be digraphs. If A x C = B x C,
then there is an isomorphism from A x C to B x C of the form (a, c¢) — (B(a, ¢), ¢),
for somemap B : A x C — B.

3 Permuted Digraphs

Given adigraph A, we denote the set of permutations of V (A) as Perm(V (A)). The next
definition is central to the remainder of this paper. For a permutation « € Perm(V (A)),
we define the permuted digraph A* as follows.

Definition 1 Given a digraph A and « € Perm(V (A)), the permuted digraph A* has
vertices V(A%) = V(A). Its arcs are E(A%) = {aa(a’) : aa’ € E(A)}. Thus aa’ €
E(A)ifandonlyifaa(a’) € E(A%),andaa’ € E(A%)ifandonlyifaa~!(a’) € E(A).

Figure 3 shows several examples. In the upper part of the figure, the cyclic per-
mutation (0124) of the vertices of Cg yields a permuted graph 52(0124) >~ 2(_,‘;. The
permuted digraph 52@3) is also shown. The lower part of the figure shows a digraph
A and two of its permuted digraphs. For another example, note that A" = A for any
digraph A. We remark that it may be possible that A* = A for some non-identity
permutation «. For instance, C_'E(OM) = C_';.

The following fundamental result about permuted digraphs was proved in [2].
We omit its proof here because it will be a consequence of our more general The-
orem 4 below.

Proposition 1 [f A and B are digraphs, then A x FZ = B x FE ifand only if B = A“
for some o € Perm(V (A)).
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This yields a corollary that describes a relationship that must hold between A and
B whenever A x C = B x C.

Corollary 1 Suppose A, B and C are digraphs and C has at least one arc. If Ax C =
B x C, then B = A“ for some a € Perm(V (A)).

Proof Suppose A xC = B x C. Since C has at least one arc, there is a homomorphism
—_—

— —
P, — C. Theorem 2 implies A x P, = B x P,. Proposition 1 now guarantees a
permutation o € Perm(V (A)) for which B = A%. m|

If there happens to be a homomorphism C — F; (that is, if C is homomorphically
%
equivalent to P,) then the converse of the above corollary becomes true. Indeed, if

B = A“, then Proposition 1 guarantees A x F; = B x FZ, whence Theorem 2 gives
A x C Z B x C. We thus get a second corollary.

Corollary 2 If C is homomorphically equivalent to ?2 then A x C = B x C ifand
only if B = A” for some a € Perm(V (A)).

Corollaries 1 and 2 show that A x C = B x C implies B = A“ for some permutation
«a, but the converse holds only if C is homomorphically equivalent to an arc ?2 Thus
digraphs C that are homomorphically equivalent to an arc are the most “pathological”
of all zero divisors in the sense that for a given A there are potentially |V (A)|! digraphs
B = A* £ A for which A x C = B x C. For other digraphs C we expect fewer
such B. In other words, cancellation of A x C = B x C is “most likely” to fail if C
is homomorphically equivalent to an arc.

In general if A, C and « are arbitrary, we do not expect that A x C = A% x C unless
there is some special relationship between A, C and «. To describe this relationship
we will need a construction called the factorial of a digraph.

4 The Digraph Factorial

The following definition was introduced in [2].

Definition 2 Given a digraph A, its factorial is another digraph, denoted as A!, and is
defined as follows. The vertex set is V(A!) = Perm(V (A)). Given two permutations
a, B € V(A!), there is an arc from « to B provided that aa’ € E(A) < a(a)B(a’) €
E(A) for all pairs a,a’ € V(A). We denote an arc from « to B as (a)(B) to avoid
confusion with composition.

We remark in passing that A! is a subgraph of the digraph exponential A4 (see
Sect. 2.4 of [4]). Observe that the definition implies there is a loop at @ € V(A!) if
and only if & is an automorphism of A. In particular any A! has a loop at the identity
id.

Figure 4 shows some examples of digraph factorials. For another example, which
explains the origins of the term “factorial,” let K, be the complete (symmetric) graph
with a loop at each vertex and note that

KN=Kyx Ky | x Ky 5 x---x Kj x K5 xK;j.
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Fig. 4 Examples of digraphs and their factorials

The components of the factorial hold a special significance, as the next proposition
indicates.

Proposition 2 If A and . are in the same component of A\, then A* = AM.
Proof Suppose («)(B) € E(A!). It suffices to show that A* = AP Observe that

ad' € E(AP) < aB~1(d') € E(A) < a(a)BB~ ' (d') € E(A)
< a(a)a’ € E(A) <= a(a)a(a’) € E(A%).

Thus o : AP — A% is an isomorphism. O

The converse of Proposition 2 is generally false, so Proposition 2 does not com-
pletely characterize the conditions under which A* = A* . Instead the characterization
involves the following relation >~ on V (A!).

Definition 3 Suppose A is a digraph and A, u € V(A!). Then A >~ p if and only if
there is an arc («)(8) € E(A!) for which u = a‘lkﬂ.

It is proved in [2] that this is an equivalence relation that obeys the following:

Proposition 3 If A is a digraph and \, i € Perm(V (A)), then A* = A" if and only
if A >~ u.

5 Results

We are now ready to prove our main results. We begin with a result that—given
a digraph A and a natural number n—characterizes those digraphs B for which

Ax P, = B x F; In what follows, F),, has vertices 0, 1,2,...,n — 1, and edges
01,12,23,...,(n —2)(n —1).

Theorem 4 Suppose A and B are digraphs, and n > 1. Then A x ?n = B x ?n if
and only if B = A%, where o is a vertex of a directed walk of length n — 2 in the
factorial A.

Proof Suppose that B = A%, where « is a vertex of a directed walk of length n — 2
in A!. Call this walk («1)(e2) - - - (o¢;—1) wWhere o = «; for some i. By Proposition 2,

. — — —

B = A%l sowe justneed to show A x P, = A% x P,.Defineamapg : V(Ax P,) —
%

V(A% x P,) as

| (@1on - ai(a), D) ifi 20
W“”—IWJ) ifi = 0.
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Clearly this is a bijection because each «; is a permutation on the vertices of A. We
need to show that it is an isomorphism. First consider edges of A x F:, that have form
(a,0)(a’, 1). Note that (a,0)(a’, 1) € E(A x ?n) if and only if (a, 0)(a;(a’), 1) €
E(A% x F;) if and only if ¢(a, 0)p(a’, 1) € E(A% x F),,).

The remaining edges of A x F)n have form (a,i)(a’,i +1),for1 <i <n — 1.
For these,

(a,i)d,i+1) € E(Ax P)

aa’ € E(A)

ai(@)ajy1(a’) € E(A) (since (o) (aiv1) € E(A!))
ai—1a(a) i (a’) € E(A)

111

o ai(@)onas - aipi(a’) € E(A)
ajon - ai(a@) ajen -y (a’) € E(AY)
(a1a2 - ej(@), i) (o1 aip1(a), i +1) € E(A" x F,:)

o(a. D i + 1) € E(A% x P,).

1117

Hence ¢ is a isomorphism.

Conversely, assume that A x F)n = Bx F)n By Theorem 3, there is an isomorphism
Q. Ax?n — B x;: of the form ¢ (a, i) = (B(a,i),i). Foreachindex0 <i <n—1,
define B; : V(A) — V(B) as Bi(a) = B(a, i). Since ¢ is an isomorphism, it follows
readily that each B; is a bijection. For any aa’ € E(A) andi € {0, ..., n —2} we have

ad € E(A) < (a, i)(d, i+ 1) € E(A x P,)
— ¢(a, o, i+1) € E(B x P,)

— (Bi(@). D(Bis1(@). i +1) € E(B x Py)
< Bi(@)pi+1(a’) € E(B).

ey

Let 0 < i < n — 1. Using the above Equivalence (1), we find that aa’ € E(A)
if and only if B;(a)Bi+1(a’) € E(B) if and only if ,31.__115[ (a)ﬁi_lﬂi+1 (@) € E(A).
By Definition 2 we now have an arc (8;_ 11 ﬁi)(ﬂl._l Bi+1) in A!. Consequently A! has
a directed walk

By BOBT BB B - (B, 5 Bu1)

of length n — 2 whose first vertex is ! Bi.
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To complete the proof, we need to show that B = A“ for some permutation « on
this walk. In fact, we will show that g : AP0 b1 Bisan isomorphism. Indeed

aa’ € E(AP Py = a (85" p1)"" (') € E(A) (by definition of AP0 F1)
> api'Bo(d) € E(A)
> fo(@p 17 fo(a’) € E(B) (by Equivalence (1))
< Bo(a)Bo(da’) € E(B).

This completes the proof. O

Notice that Proposition 1 is the special case n = 2 of Theorem 4. Indeed, if n = 2,
then a walk of length n — 2 in A! is a single vertex of A!, that is, a permutation « of
V(A), and Theorem 4 reduces to Proposition 1.

Corollary 3 Suppose a digraph C is homomorphically equivalent to F,)l Then A X
C = B x Cifandonly if B = A%, where « is on a directed walk of length n — 2 in
the factorial of A.

Proof Let C be homomorphically equivalent to P,. By Theorem2, A x C = B x C
— —
if and only if A x P, = B x P,. The corollary then follows from Theorem 4. O

Corollary 3 and Proposition 3 combine to give the following.

Theorem 5 Suppose A and C are digraphs, and C is homomorphically equivalent to
%
P,. Let

Y, = {a € V(A!) : a is on a directed walk of lengthn — 2 in A} .

Form a partition Y = [a1] U [a2] U ... U [ax] of Yy, where each [«;] is the ~-
equivalence class (Definition 3) containing a representative ;. Then the isomorphism
classes of digraphs B for which A x C = B x C are precisely B = A% for1 <i <k.

Next we develop analogues of these results where the path F)n is replaced by a

directed cycle C,,. A definition is necessary.

A null-walk in A! is a closed walk (ag)(a)(a2)(3) ... (a,—1)(eg), where
(i) (ajtr1) € E(A!) for each i (arithmetic modulo n) and apojor03 -« -ay—1 =
id. (Null-walks are not particularly rare; any closed directed walk W = (o) (1)
(002) ... (0ty—1)(ap) in A! can be extended to a null-walk by traversing W k times,
where k is the order of the permutation «goj3 . . . 0t5—1.)

Theorem 6 If A and B are digraphs, and n > 1, then A x C_',), =B x 81 if and only
if B= A%, where a is on a null-walk of length n in the factorial A!.

Proof Suppose B = A%, where « is on a null-walk («g)(a1)(@2) ... (a,—1)(ap) in
— —
the factorial. By Proposition 2, B = A%, so it suffices to show A x C,, = A% x C,,.
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— —
We construct this isomorphism as follows. Define amap ¢ : A x C,, — A% x C,
such that

p(a,i) = (aoar - - - i (a), ).

Because each «; is a permutation on the vertices of A, it follows that ¢ is a bijection.
Knowing that the arcs of the null-walk are arcs in A!, we can conclude

aa' € E(A) < a;(a)a;41(a’) € E(A)
<— aj_1ai(a) 0(,‘0[,'.;,_1(61/) e E(A)

= apo) - ajmjai(@) ajan iy (a’) € E(A)
> apa) - aj—1ai(a) i o (a’) € E(A%)

for any non-negative i, where the index arithmetic is done modulo n. Wheni =n —1,
this reduces to aa’ € E(A) < aag(a’) € E(A%), as the vertices of the null-walk
multiply to the identity.

The above observations imply

(@.i)@.i+1) e EAx Cp)
= (aoas -+ ai(a), i) (@ -+~ @i 1(@), i+ 1) € E(A% x C)
= g(a. D). i+ 1) € E(A% x C),

so we have an isomorphism ¢ : A X EZ — A% x a

Conversely, suppose A x C_‘),l = B x C_‘)n By Theorem 3, we are guaranteed an
isomorphism ¢ : A X C_‘; — B x C_‘,: of the form ¢(a, i) = (Bi(a), i). Since ¢ is an
isomorphism, it follows that each 8; : V(A) — V(B) is bijective. We now argue as
before. For any aa’ € E(A),

ad € E(A) <= (a,i)(d,i+1) € E(A x Cy)
— o(a,i)p(,i+1) e E(B x Cy)
s (Bi(@), ) (Bir1(@),i + 1) € E(B x Cp)
< Bi(a)Bi+1(a") € E(B), ()

where the index arithmetic is done modulo n. By Equivalence (2), aa’ € E(A) if
and only if Bi(@)B;41(a) € E(B) if and only if B! ;@) Biv1(a) € E(A),
Consequently (ﬁf_llﬁ,-)(ﬂflﬁiﬂ) is an arc of A! forany i € {0,1,...,n — 1} that

produces the closed walk (8, ' 81) (B, 82)(B5 ' B3) - - (B, Bo)(By ' B1) in Al. The
permutations in this walk multiply up to the identity, so in fact this is a null-walk.

To complete the proof, we need to show that B = A% for some permutation & on
~1 . .
this walk. In fact, we can show that Sy : AP0 1 — B is an isomorphism exactly as

@ Springer



Graphs and Combinatorics
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Fig. 5 Isomorphic products guaranteed by Theorem 6

was done at the end of the proof of Theorem 4, but using Equivalence (2) instead of
Equivalence (1). O

To illustrate this theorem, consider A = (_?3, whose factorial is given in Fig. 4. The
factorial contains a null-walk (02)(01)(12)(02)(01)(12)(02) of length six. Theorem
6 guarantees C_'; X C_>‘6 ~ 502 % 52 and this is borne out in Fig. 5.

Note also that the closed directed walk (02)(01)(12)(02) of length three in A! is
not a null-walk, as (02)(01)(12) = (01) # id. Indeed A! had no null-walk of length
three. The theorem predicts a X EZ Z C_‘;(OZ) X C_‘;, and this is in fact the case, as the
reader may verify.

Corollary 4 Suppose a digraph C is homomorphically equivalent to C_',: Then A X
C = B x Cifand only if B = A%, where the factorial A! contains a null-walk of
length n through «.

The proof repeats the argument used in Corollary 2. As in that case, our findings
are summarized in a theorem.

Theorem 7 Suppose A and C are digraphs, and C is homomorphically equivalent to
—
Cy. Let

Y, ={a € A! : « lies on a null-walk of length n in A!}.

Consider the partition Y = [o1] U [a2] U ... U [ax] of Yy, where each [«;] is the
~-equivalence class containing the representative «;. Then the digraphs B for which
A x C = B x C are precisely B = A% for1 <i <k.

Final Remarks Our methods give a complete set of solutions X to the digraph equation
A x C = X x C, where C is a zero divisor that is homomorphically equivalent to a
directed path or cycle.
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For more general types of zero divisors C, our methods give only partial solutions.
As noted earlier, any zero divisor either has a homomorphism into some directed path

F),,, or it has homomorphisms into finitely many directed cycles C_‘; of prime lengths.
= —
For such C, Theorem 2 implies that any solution of A x P, = X x P, (respectively

A X C_‘; = X x C_’;) isasolutionto A x C = X x C. The results of this paper show how
to find these solutions, but they do not guarantee that there may not be more solutions
to A x C = X x C. Thus it remains to unravel the mysteries of zero divisors that are
not homomorphically equivalent to directed paths or cycles.
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