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Abstract A digraph C is called a zero divisor if there exist non-isomorphic digraphs
A and B for which A ×C ∼= B ×C , where the operation is the direct product. In other
words, C being a zero divisor means that cancellation property A×C ∼= B×C ⇒ A ∼=
B fails. Lovász proved that C is a zero divisor if and only if it admits a homomorphism
into a disjoint union of directed cycles of prime lengths.Thus any digraph C that is
homomorphically equivalent to a directed cycle (or path) is a zero divisor. Given such
a zero divisor C and an arbitrary digraph A, we present a method of computing all
solutions X to the digraph equation A × C ∼= X × C .
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1 Introduction

The article [1] solves the following variation of the cancellation problem for the direct
product of graphs: Given graphs A and C , find all graphs B for which A×C ∼= B ×C .

This work extends and generalizes some earlier results by R. Hammack and K. Toman [Cancellation of
direct products of digraphs, Discusiones Mathematicae Graph Theory, 30 (2010) 575–590].
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Fig. 1 Some digraphs

The analogous problem where A, B and C are digraphs presents some special
challenges, and a complete solution is not yet realized. The article [2] solves the
problem for those digraphs C that are homomorphically equivalent to a single arc

−→
P2.

(Such C are of special interest because they are the most “pathological” of all zero
divisors, in a sense that will be explained in Sect. 3 below.)

The current article solves the problem for a more general class of digraphs C , namely
those that are homomorphically equivalent to directed cycles or paths of arbitrary
lengths. Specifically, given a digraph A and a digraph C that is homomorphically equiv-
alent to a directed path or cycle, we classify those digraphs B for which A×C ∼= B×C .

We first fix the notation by recalling some relevant concepts. A digraph A is a binary
relation E(A) on a finite vertex set V (A), that is, a subset E(A) ⊆ V (A)× V (A). For
brevity, an ordered pair (a, a′) ∈ E(A) is denoted aa′, and is visualized as an arrow
pointing from a to a′. Elements of E(A) are called arcs. A reflexive arc aa is called a
loop. A graph is a digraph that is symmetric (as a relation). We use the usual notation
for graphs; in particular Kn is the complete graph on n vertices.

Given a positive integer n, the directed cycle
−→
Cn is the digraph with vertices

{0, 1, 2, . . . , n − 1} and arcs {01, 12, 23, . . . , (n − 1)0}. Thus
−→
C1 consists of a single

vertex with a loop, and
−→
C2 = K2. The directed path

−→
Pn is

−→
Cn with one arc removed.

Figure 1 shows some of these digraphs.
We denote the condition of X being a sub-digraph of A as X ⊆ A. A digraph A is

strongly connected if for every pair a, a′ of its vertices there is a sub-digraph
−→
Pn ⊆ A

beginning at a and ending at a′. A digraph is connected if any a and a′ are joined
by a path, each arc of which has arbitrary orientation. The connected components
(respectively strongly connected components) of A are the maximal sub-digraphs of
A that are connected (respectively strongly connected).

If A and B are digraphs, then A + B denotes the disjoint union of A and B. The
disjoint union of n copies of A is denoted n A. A homomorphism ϕ : A → B is a map
ϕ : V (A) → V (B) for which aa′ ∈ E(A) implies ϕ(a)ϕ(a′) ∈ E(B). Digraphs A and
B are homomorphically equivalent if there are homomorphisms A → B and B → A.

The direct product of two digraphs A and B is the digraph A × B whose vertex
set is the Cartesian product V (A) × V (B) and whose arcs are the pairs (a, b)(a′, b′)
with aa′ ∈ E(A) and bb′ ∈ E(B). We assume the reader to be familiar with direct
products and homomorphisms. For standard references see [3] and [4].

2 Cancellation Laws

Lovász [5] defines a digraph C to be a zero divisor if there exist non-isomorphic
digraphs A and B for which A × C ∼= B × C . For example, Fig. 2 shows that

−→
C3 is a
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Fig. 2 Example of a zero divisor

zero divisor: If A = −→
C3 and B = 3

−→
C1, then clearly A �∼= B, yet A×−→

C3 ∼= B ×−→
C3 (both

products are isomorphic to 3
−→
C3). Here is the main result concerning zero divisors.

Theorem 1 (Lovász [5], Theorem 8) A digraph C is a zero divisor if and only if there

is a homomorphism ϕ : C → −→
C p1 + −→

C p2 + −→
C p3 + · · · + −→

C pk for prime numbers
p1, p2, . . . , pk.

Thus, in particular,
−→
Cn with n > 1 is a zero divisor (even if n is not prime, there is

an n
p -fold homomorphic cover ϕ : −→

Cn → −→
C p for any prime divisor p of n). Also each

−→
Pn is a zero divisor, for clearly there is a homomorphism

−→
Pn → −→

C p for any n and p.
Theorem 1 can be regarded as a cancellation law for the direct product, as it gives

exact conditions on C under which A × C ∼= B × C necessarily implies A ∼= B. By
contrast, the present article focuses on ways that cancellation can fail. Given a digraph
A and a natural number n, we will describe a method of finding all digraphs B for
which A×−→

Pn ∼= B×−→
Pn , as well as all digraphs B for which A×−→

Cn ∼= B×−→
Cn . Further,

given a digraph C that is homomorphically equivalent to
−→
Pn or

−→
Cn , we describe how

to find all B for which A × C ∼= B × C .
Theorem 1 characterizes zero divisors as those digraphs C that admit a homomor-

phism C → −→
C p1 + −→

C p2 + · · · + −→
C pk . If C is connected, such a homomorphism has an

image in just one directed cycle, so it can be regarded as a homomorphism C → −→
C p.

Often there are only finitely many p for which homomorphisms C → −→
C p exist. But for

some C it may happen that there is a homomorphism C → −→
C p for each prime number

p. Then, by taking p > |V (C)|, we see that C admits a homomorphism C → −→
Pn

for some n. Conversely, since there are homomorphisms
−→
Pn → −→

C p for any n and p,

the existence of a homomorphism C → −→
Pn guarantees a homomorphism C → −→

C p

for every p. Therefore connected zero divisors C can be divided into two distinct and
mutually exclusive types: On one hand there are those that admit a homomorphism
C → −→

Pn for some n (and thus a homomorphism C → −→
C p for all p); on the other hand

there are those that admit homomorphisms C → −→
C p for only finitely many prime

numbers p.
This suggests that the expressions A × −→

Pn ∼= B × −→
Pn and A × −→

Cn ∼= B × −→
Cn are

of fundamental importance in the study of zero divisors, and motivates the results of
the present article.
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Fig. 3 Examples of permuted digraphs

Our methods will require the following theorems due to Lovász.

Theorem 2 (Lovász [5], Theorem 6) Let A, B, C and D be digraphs. If A × C
∼= B × C and there is a homomorphism from D to C, then A × D ∼= B × D.

Theorem 3 (Lovász [5], Theorem 7) Let A, B, C be digraphs. If A × C ∼= B × C,
then there is an isomorphism from A × C to B × C of the form (a, c) 	→ (β(a, c), c),
for some map β : A × C → B.

3 Permuted Digraphs

Given a digraph A, we denote the set of permutations of V (A) as Perm(V (A)). The next
definition is central to the remainder of this paper. For a permutation α ∈ Perm(V (A)),
we define the permuted digraph Aα as follows.

Definition 1 Given a digraph A and α ∈ Perm(V (A)), the permuted digraph Aα has
vertices V (Aα) = V (A). Its arcs are E(Aα) = {aα(a′) : aa′ ∈ E(A)}. Thus aa′ ∈
E(A) if and only if aα(a′) ∈ E(Aα), and aa′ ∈ E(Aα) if and only if aα−1(a′) ∈ E(A).

Figure 3 shows several examples. In the upper part of the figure, the cyclic per-
mutation (0124) of the vertices of

−→
C6 yields a permuted graph

−→
C6

(0124) ∼= 2
−→
C3. The

permuted digraph
−→
C6

(23) is also shown. The lower part of the figure shows a digraph
A and two of its permuted digraphs. For another example, note that Aid = A for any
digraph A. We remark that it may be possible that Aα ∼= A for some non-identity
permutation α. For instance,

−→
C6

(024) ∼= −→
C6.

The following fundamental result about permuted digraphs was proved in [2].
We omit its proof here because it will be a consequence of our more general The-
orem 4 below.

Proposition 1 If A and B are digraphs, then A ×−→
P2 ∼= B ×−→

P2 if and only if B ∼= Aα

for some α ∈ Perm(V (A)).
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This yields a corollary that describes a relationship that must hold between A and
B whenever A × C ∼= B × C .

Corollary 1 Suppose A, B and C are digraphs and C has at least one arc. If A×C ∼=
B × C, then B ∼= Aα for some α ∈ Perm(V (A)).

Proof Suppose A×C ∼= B×C . Since C has at least one arc, there is a homomorphism−→
P2 → C . Theorem 2 implies A × −→

P2 ∼= B × −→
P2. Proposition 1 now guarantees a

permutation α ∈ Perm(V (A)) for which B ∼= Aα . 
�
If there happens to be a homomorphism C → −→

P2 (that is, if C is homomorphically
equivalent to

−→
P2) then the converse of the above corollary becomes true. Indeed, if

B ∼= Aα , then Proposition 1 guarantees A × −→
P2 ∼= B × −→

P2, whence Theorem 2 gives
A × C ∼= B × C . We thus get a second corollary.

Corollary 2 If C is homomorphically equivalent to
−→
P2, then A × C ∼= B × C if and

only if B ∼= Aα for some α ∈ Perm(V (A)).

Corollaries 1 and 2 show that A×C ∼= B×C implies B ∼= Aα for some permutation
α, but the converse holds only if C is homomorphically equivalent to an arc

−→
P2. Thus

digraphs C that are homomorphically equivalent to an arc are the most “pathological”
of all zero divisors in the sense that for a given A there are potentially |V (A)|! digraphs
B ∼= Aα �∼= A for which A × C ∼= B × C . For other digraphs C we expect fewer
such B. In other words, cancellation of A × C ∼= B × C is “most likely” to fail if C
is homomorphically equivalent to an arc.

In general if A, C and α are arbitrary, we do not expect that A×C ∼= Aα ×C unless
there is some special relationship between A, C and α. To describe this relationship
we will need a construction called the factorial of a digraph.

4 The Digraph Factorial

The following definition was introduced in [2].

Definition 2 Given a digraph A, its factorial is another digraph, denoted as A!, and is
defined as follows. The vertex set is V (A!) = Perm(V (A)). Given two permutations
α, β ∈ V (A!), there is an arc from α to β provided that aa′ ∈ E(A) ⇐⇒ α(a)β(a′) ∈
E(A) for all pairs a, a′ ∈ V (A). We denote an arc from α to β as (α)(β) to avoid
confusion with composition.

We remark in passing that A! is a subgraph of the digraph exponential AA (see
Sect. 2.4 of [4]). Observe that the definition implies there is a loop at α ∈ V (A!) if
and only if α is an automorphism of A. In particular any A! has a loop at the identity
id.

Figure 4 shows some examples of digraph factorials. For another example, which
explains the origins of the term “factorial,” let K ∗

n be the complete (symmetric) graph
with a loop at each vertex and note that

K ∗
n ! ∼= K ∗

n × K ∗
n−1 × K ∗

n−2 × · · · × K ∗
3 × K ∗

2 × K ∗
1 .
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Fig. 4 Examples of digraphs and their factorials

The components of the factorial hold a special significance, as the next proposition
indicates.

Proposition 2 If λ and μ are in the same component of A!, then Aλ ∼= Aμ.

Proof Suppose (α)(β) ∈ E(A!). It suffices to show that Aα ∼= Aβ . Observe that

aa′ ∈ E(Aβ) ⇐⇒ aβ−1(a′) ∈ E(A) ⇐⇒ α(a)ββ−1(a′) ∈ E(A)

⇐⇒ α(a)a′ ∈ E(A) ⇐⇒ α(a)α(a′) ∈ E(Aα).

Thus α : Aβ → Aα is an isomorphism. 
�
The converse of Proposition 2 is generally false, so Proposition 2 does not com-

pletely characterize the conditions under which Aλ ∼= Aμ. Instead the characterization
involves the following relation � on V (A!).
Definition 3 Suppose A is a digraph and λ,μ ∈ V (A!). Then λ � μ if and only if
there is an arc (α)(β) ∈ E(A!) for which μ = α−1λβ.

It is proved in [2] that this is an equivalence relation that obeys the following:

Proposition 3 If A is a digraph and λ,μ ∈ Perm(V (A)), then Aλ ∼= Aμ if and only
if λ � μ.

5 Results

We are now ready to prove our main results. We begin with a result that—given
a digraph A and a natural number n—characterizes those digraphs B for which
A × −→

Pn ∼= B × −→
Pn . In what follows,

−→
Pn has vertices 0, 1, 2, . . . , n − 1, and edges

01, 12, 23, . . . , (n − 2)(n − 1).

Theorem 4 Suppose A and B are digraphs, and n > 1. Then A × −→
Pn ∼= B × −→

Pn if
and only if B ∼= Aα , where α is a vertex of a directed walk of length n − 2 in the
factorial A!.
Proof Suppose that B ∼= Aα , where α is a vertex of a directed walk of length n − 2
in A!. Call this walk (α1)(α2) · · · (αn−1) where α = αi for some i . By Proposition 2,
B ∼= Aα1 , so we just need to show A×−→

Pn ∼= Aα1 ×−→
Pn . Define a map ϕ : V (A×−→

Pn) →
V (Aα1 × −→

Pn) as

ϕ(a, i) =
{

(α1α2 · · · αi (a), i) if i �= 0
(a, i) if i = 0.
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Clearly this is a bijection because each αi is a permutation on the vertices of A. We
need to show that it is an isomorphism. First consider edges of A × −→

Pn that have form
(a, 0)(a′, 1). Note that (a, 0)(a′, 1) ∈ E(A × −→

Pn) if and only if (a, 0)(α1(a′), 1) ∈
E(Aα1 × −→

Pn) if and only if ϕ(a, 0)ϕ(a′, 1) ∈ E(Aα1 × −→
Pn).

The remaining edges of A × −→
Pn have form (a, i)(a′, i + 1), for 1 ≤ i < n − 1.

For these,

(a, i)(a′, i + 1) ∈ E(A × −→
Pn)

⇐⇒ aa′ ∈ E(A)

⇐⇒ αi (a)αi+1(a
′) ∈ E(A) (since (αi )(αi+1) ∈ E(A!))

⇐⇒ αi−1αi (a) αiαi+1(a
′) ∈ E(A)

...

⇐⇒ α1 · · · αi (a) α2α3 · · · αi+1(a
′) ∈ E(A)

⇐⇒ α1α2 · · · αi (a) α1α2 · · · αi+1(a
′) ∈ E(Aα1)

⇐⇒ (
α1α2 · · · αi (a), i

)(
α1α2 · · · αi+1(a

′), i + 1
) ∈ E(Aα1 × −→

Pn)

⇐⇒ ϕ(a, i)ϕ(a′, i + 1) ∈ E(Aα1 × −→
Pn).

Hence ϕ is a isomorphism.
Conversely, assume that A×−→

Pn ∼= B ×−→
Pn . By Theorem 3, there is an isomorphism

ϕ : A×−→
Pn → B×−→

Pn of the form ϕ(a, i) = (β(a, i), i). For each index 0 ≤ i < n−1,
define βi : V (A) → V (B) as βi (a) = β(a, i). Since ϕ is an isomorphism, it follows
readily that each βi is a bijection. For any aa′ ∈ E(A) and i ∈ {0, . . . , n −2} we have

aa′ ∈ E(A) ⇐⇒ (a, i)(a′, i + 1) ∈ E(A × −→
Pn)

⇐⇒ ϕ(a, i)ϕ(a′, i + 1) ∈ E(B × −→
Pn)

⇐⇒ (βi (a), i)(βi+1(a
′), i + 1) ∈ E(B × −→

Pn)

⇐⇒ βi (a)βi+1(a
′) ∈ E(B).

(1)

Let 0 < i < n − 1. Using the above Equivalence (1), we find that aa′ ∈ E(A)

if and only if βi (a)βi+1(a′) ∈ E(B) if and only if β−1
i−1βi (a)β−1

i βi+1(a′) ∈ E(A).

By Definition 2 we now have an arc (β−1
i−1βi )(β

−1
i βi+1) in A!. Consequently A! has

a directed walk

(β−1
0 β1)(β

−1
1 β2)(β

−1
2 β3) · · · (β−1

n−2βn−1)

of length n − 2 whose first vertex is β−1
0 β1.
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To complete the proof, we need to show that B ∼= Aα for some permutation α on

this walk. In fact, we will show that β0 : Aβ−1
0 β1 → B is an isomorphism. Indeed

aa′ ∈ E(Aβ−1
0 β1) ⇐⇒ a (β−1

0 β1)
−1(a′) ∈ E(A) (by definition ofAβ−1

0 β1)

⇐⇒ a β−1
1 β0(a

′) ∈ E(A)

⇐⇒ β0(a)β1β
−1
1 β0(a

′) ∈ E(B) (by Equivalence (1))

⇐⇒ β0(a)β0(a
′) ∈ E(B).

This completes the proof. 
�
Notice that Proposition 1 is the special case n = 2 of Theorem 4. Indeed, if n = 2,

then a walk of length n − 2 in A! is a single vertex of A!, that is, a permutation α of
V (A), and Theorem 4 reduces to Proposition 1.

Corollary 3 Suppose a digraph C is homomorphically equivalent to
−→
Pn. Then A ×

C ∼= B × C if and only if B ∼= Aα , where α is on a directed walk of length n − 2 in
the factorial of A.

Proof Let C be homomorphically equivalent to
−→
Pn . By Theorem 2, A × C ∼= B × C

if and only if A × −→
Pn ∼= B × −→

Pn . The corollary then follows from Theorem 4. 
�
Corollary 3 and Proposition 3 combine to give the following.

Theorem 5 Suppose A and C are digraphs, and C is homomorphically equivalent to−→
Pn. Let

ϒn = {α ∈ V (A!) : α is on a directed walk of length n − 2 in A!} .

Form a partition ϒ = [α1] ∪ [α2] ∪ . . . ∪ [αk] of ϒn, where each [αi ] is the �-
equivalence class (Definition 3) containing a representative αi . Then the isomorphism
classes of digraphs B for which A×C ∼= B ×C are precisely B = Aαi for 1 ≤ i ≤ k.

Next we develop analogues of these results where the path
−→
Pn is replaced by a

directed cycle
−→
Cn . A definition is necessary.

A null-walk in A! is a closed walk (α0)(α1)(α2)(α3) . . . (αn−1)(α0), where
(αi )(αi+1) ∈ E(A!) for each i (arithmetic modulo n) and α0α1α2α3 · · · αn−1 =
id. (Null-walks are not particularly rare; any closed directed walk W = (α0)(α1)

(α2) . . . (αn−1)(α0) in A! can be extended to a null-walk by traversing W k times,
where k is the order of the permutation α0α1α2 . . . αn−1.)

Theorem 6 If A and B are digraphs, and n ≥ 1, then A × −→
Cn ∼= B × −→

Cn if and only
if B ∼= Aα , where α is on a null-walk of length n in the factorial A!.
Proof Suppose B ∼= Aα , where α is on a null-walk (α0)(α1)(α2) . . . (αn−1)(α0) in
the factorial. By Proposition 2, B ∼= Aα0 , so it suffices to show A × −→

Cn ∼= Aα0 × −→
Cn .
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We construct this isomorphism as follows. Define a map ϕ : A × −→
Cn → Aα0 × −→

Cn

such that

ϕ(a, i) = (α0α1 · · · αi (a), i).

Because each αi is a permutation on the vertices of A, it follows that ϕ is a bijection.
Knowing that the arcs of the null-walk are arcs in A!, we can conclude

aa′ ∈ E(A) ⇐⇒ αi (a) αi+1(a
′) ∈ E(A)

⇐⇒ αi−1αi (a) αiαi+1(a
′) ∈ E(A)

...

⇐⇒ α0α1 · · · αi−1αi (a) α1α2 · · · αiαi+1(a
′) ∈ E(A)

⇐⇒ α0α1 · · · αi−1αi (a) α0α1α2 · · · αiαi+1(a
′) ∈ E(Aα0)

for any non-negative i , where the index arithmetic is done modulo n. When i = n −1,
this reduces to aa′ ∈ E(A) ⇐⇒ aα0(a′) ∈ E(Aα0), as the vertices of the null-walk
multiply to the identity.

The above observations imply

(a, i)(a′, i + 1) ∈ E(A × −→
Cn)

⇐⇒ (α0α1 · · · αi (a), i)
(
α0α1 · · ·αi+1(a

′), i + 1
) ∈ E(Aα0 × −→

Cn)

⇐⇒ ϕ(a, i)ϕ(a′, i + 1) ∈ E(Aα0 × −→
Cn),

so we have an isomorphism ϕ : A × −→
Cn → Aα0 × −→

Cn .
Conversely, suppose A × −→

Cn ∼= B × −→
Cn . By Theorem 3, we are guaranteed an

isomorphism ϕ : A × −→
Cn → B × −→

Cn of the form ϕ(a, i) = (βi (a), i). Since ϕ is an
isomorphism, it follows that each βi : V (A) → V (B) is bijective. We now argue as
before. For any aa′ ∈ E(A),

aa′ ∈ E(A) ⇐⇒ (a, i)(a′, i + 1) ∈ E(A × −→
Cn)

⇐⇒ ϕ(a, i)ϕ(a′, i + 1) ∈ E(B × −→
Cn)

⇐⇒ (βi (a), i)(βi+1(a
′), i + 1) ∈ E(B × −→

Cn)

⇐⇒ βi (a)βi+1(a
′) ∈ E(B), (2)

where the index arithmetic is done modulo n. By Equivalence (2), aa′ ∈ E(A) if
and only if βi (a)βi+1(a′) ∈ E(B) if and only if β−1

i−1βi (a)β−1
i βi+1(a′) ∈ E(A).

Consequently (β−1
i−1βi )(β

−1
i βi+1) is an arc of A! for any i ∈ {0, 1, . . . , n − 1} that

produces the closed walk (β−1
0 β1)(β

−1
1 β2)(β

−1
2 β3) · · · (β−1

n−1β0)(β
−1
0 β1) in A!. The

permutations in this walk multiply up to the identity, so in fact this is a null-walk.
To complete the proof, we need to show that B ∼= Aα for some permutation α on

this walk. In fact, we can show that β0 : Aβ−1
0 β1 → B is an isomorphism exactly as
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Fig. 5 Isomorphic products guaranteed by Theorem 6

was done at the end of the proof of Theorem 4, but using Equivalence (2) instead of
Equivalence (1). 
�

To illustrate this theorem, consider A = −→
C3, whose factorial is given in Fig. 4. The

factorial contains a null-walk (02)(01)(12)(02)(01)(12)(02) of length six. Theorem
6 guarantees

−→
C3 × −→

C6 ∼= −→
C3

(02) × −→
C6 and this is borne out in Fig. 5.

Note also that the closed directed walk (02)(01)(12)(02) of length three in A! is
not a null-walk, as (02)(01)(12) = (01) �= id. Indeed A! had no null-walk of length
three. The theorem predicts

−→
C3 ×−→

C3 �∼= −→
C3

(02) ×−→
C3, and this is in fact the case, as the

reader may verify.

Corollary 4 Suppose a digraph C is homomorphically equivalent to
−→
Cn. Then A ×

C ∼= B × C if and only if B ∼= Aα , where the factorial A! contains a null-walk of
length n through α.

The proof repeats the argument used in Corollary 2. As in that case, our findings
are summarized in a theorem.

Theorem 7 Suppose A and C are digraphs, and C is homomorphically equivalent to−→
Cn. Let

ϒn = {α ∈ A! : α lies on a null-walk of length n in A!}.

Consider the partition ϒ = [α1] ∪ [α2] ∪ . . . ∪ [αk] of ϒn, where each [αi ] is the
�-equivalence class containing the representative αi . Then the digraphs B for which
A × C ∼= B × C are precisely B = Aαi for 1 ≤ i ≤ k.

Final Remarks Our methods give a complete set of solutions X to the digraph equation
A × C ∼= X × C , where C is a zero divisor that is homomorphically equivalent to a
directed path or cycle.
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For more general types of zero divisors C , our methods give only partial solutions.
As noted earlier, any zero divisor either has a homomorphism into some directed path−→
Pn , or it has homomorphisms into finitely many directed cycles

−→
C p of prime lengths.

For such C , Theorem 2 implies that any solution of A × −→
Pn ∼= X × −→

Pn (respectively
A×−→

C p ∼= X ×−→
C p) is a solution to A×C ∼= X ×C . The results of this paper show how

to find these solutions, but they do not guarantee that there may not be more solutions
to A × C ∼= X × C . Thus it remains to unravel the mysteries of zero divisors that are
not homomorphically equivalent to directed paths or cycles.
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