
Houston Journal of Mathematics
c© 1999 University of Houston

Volume 25, No. 2, 1999

CIRCULARITY OF PLANAR GRAPHS

RICHARD H. HAMMACK

Communicated by Klaus Kaiser

Abstract. A circular cover of a graph G is a cover {X0, · · · , Xn−1} of

the topological space G by closed connected subsets, indexed over Zn, with

the following properties: Each element in the cover contains a vertex of G,

each vertex of G is contained in at most two elements of the cover, and

Xa ∩ Xb 6= ∅ if and only if b − a ∈ {−1, 0, 1}. The circularity of G is the

largest integer n for which there is a circular cover of G with n elements.

It is known that the circularity of a planar graph is even. We sharpen this

result by proving that the circularity of a plane graph is twice the maximum

number of disjoint paths joining two faces of G. This result leads to a

polynomial-time algorithm which computes the circularity of any connected

planar graph.

1. Introduction

A graph G is a finite vertex set V (G) together with an edge set E(G) composed
of two-element subsets of V (G). An edge {v, w} ∈ E(G) is abbreviated vw (or
wv). In addition to this usual combinatorial interpretation, we regard a graph as
a topological space; its vertices are points in Euclidean space Rn, each edge vw is
a simple arc joining v to w, and edges intersect only at vertices. A circular cover
of a graph G is a finite cover {X0, · · · , Xn−1} of the space G by closed connected
subsets, indexed over the cyclic group Zn = Z/nZ, and satisfying the following
properties: Each Xa contains at least one vertex of G, each vertex of G is in at
most two of the Xa’s, and Xa ∩ Xb 6= ∅ if and only if b − a ∈ {−1, 0, 1}. The
circularity of G is defined to be the integer

σ(G) = max {n | G has a circular cover with n elements }.(1.1)
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For example, Figure 1 displays a circular cover of C4 (the four-cycle) by 8 elements,
so σ(C4) ≥ 8. In fact, since any of the four vertices can be in at most 2 elements
of a circular cover, it follows that σ(C4) ≤ 8. Hence σ(C4) = 8. Similarly
σ(Cp) = 2p for any integer p ≥ 3.
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Figure 1

Very little is known about the circularity of arbitrary graphs. This paper ex-
plores the circularity of the class of planar graphs. Our main result (Theorem
3.3) is that the circularity of a two-connected planar graph is twice the maximum
number of disjoint paths joining two faces of a planar embedding. Further, we
describe how this leads to a polynomial-time algorithm which computes the cir-
cularity of such a graph. We begin with a survey of results from the literature.
The notion of an admissible map (introduced in [1]) is then reviewed in Section
2, and this is employed in the proof of our main result in Section 3.

The circularity of several classes of graphs is studied in [1]. It is proved there
that the circularity of the complete graphs Kp and the complete bipartite graphs
K(p, q) is 6 when p ≥ 3, q ≥ 2 (Proposition 4.2 and Theorem 4.5). Furthermore, it
is shown (Theorem 5.4) that for p ≥ 6 the circulant graph Cp〈1, 2〉 has circularity
p, so for any integer p ≥ 6 there is a graph with circularity p. By Theorem 4.4
of [2], the circularity of a planar graph is even. This becomes a corollary of our
main result.

It is also proved in [2] that σ(G) = 2 if and only if G is a tree, and σ(G) ≥ 6
if and only if G is a connected graph which contains a cycle (Theorem 2.2 and
Corollary 2.3). Moreover, it is proved (Theorem 3.6) that if G is connected then
σ(G) = max{σ(Bi)|1 ≤ i ≤ k}, where {B1, · · · , Bk} is the set of blocks of G.
Now, either a bock is isomorphic to K2 or it is two-connected. Since σ(K2) = 2,
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the computation of the circularity of an arbitrary connected graph can thus be
reduced to computation of the circularity of two-connected graphs. Therefore, the
condition of two-connectivity in our main result does not restrict its generality.
Notice that since any two-connected graph is connected and contains a cycle, its
circularity is at least 6.

We adopt the lexicon and notation of [6]. A graph is planar if it can be
embedded in the Euclidean plane R2, and a planar graph with a fixed embedding
in R2 is called a plane graph. A plane graph G is regarded as a subspace of R2;
its vertex set is a finite set of points in R2, and its edges are closed arcs joining
pairs of vertices. (However, if X is a subgraph of G, then G−X denotes the graph
obtained by removing from G all of X and the edges incident with it – not the
space G with the points X removed.) The connected components of R2 −G are
called the faces of G, and the set of faces is denoted F (G). The topological closure
of a face Y is denoted Y , and the boundary of Y is ∂Y = Y−Y , which is a subgraph
of G. If G is two-connected then ∂Y is a cycle (cf. Proposition 4.2.5 of [6]). The
sets V (∂Y ) and E(∂Y ) are abbreviated V (Y ) and E(Y ), respectively. If A and B
are disjoint subgraphs of G, then E(A,B) = {vw ∈ E(G) | v ∈ V (A), w ∈ V (B)}.
The cardinality of a set S is denoted |S|.

The edge space E(G) of G is the power set of E(G) endowed with the structure
of a vector space over the two-element field F2. Addition is symmetric difference
of sets and zero is the empty set. There is a bilinear form ( , ) on E(G) defined by
declaring (α, β) to be 0 or 1 depending on whether |α ∩ β| is even or odd. The
cycle space C(G) of G is the subspace of E(G) spanned by the edge sets of the
cycles of G.

2. Admissible Maps

The idea of an admissible map, introduced in [1], puts the notion of a circular
cover into a combinatorial setting, thus simplifying our proofs. To motivate this
definition, observe that any circular cover X = {X0, · · · , Xn−1} of a graph G

induces a map fX : V (G)→ Zn × Zn defined by

fX (v) =
{

(a, a+ 1) if v ∈ Xa ∩Xa+1

(a, a) if v /∈ Xb for a 6= b.

The fact that it comes from a circular cover gives fX a certain structure. We
next recall from [1] some notations that aid in formalizing this structure. This
notation will be employed throughout our paper.
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Let A(n) = {(a, b) ∈ Zn × Zn | b − a ∈ {0, 1}}, and for each a ∈ Zn define
T (a) = {(a − 1, a), (a, a), (a, a + 1)} ⊆ A(n). Given a map f : V (G) → A(n),
and a ∈ Zn, let G(a) be the subgraph of G induced by the vertices f−1(T (a)).
(If f = fX , then G(a) is the subgraph of G induced by the vertices in Xa.) The
next definition characterizes those maps fX coming from circular covers.

Definition 1. A map f : V (G) → A(n) is said to be admissible if each of the
following conditions hold:

(a) If vw ∈ E(G), then v, w ∈ V (G(a)) ∪ V (G(a+ 1)) for some a ∈ Zn.
(b) If a ∈ Zn, then G(a) is connected.
(c) If a ∈ Zn, then either G(a) ∩G(a+ 1) 6= ∅ or E(G(a), G(a+ 1)) 6= ∅.

The connection between admissible maps and circular covers is given in the
next proposition, an immediate consequence of Theorem 2.5 of [1].

Proposition 2.1. Let n ≥ 6. For each admissible map f : V (G) → A(n), there
is a circular cover of G by n elements. For each circular cover of G by n ≥ 6
elements, there is an admissible map f : V (G)→ A(n).

This proposition allows us to rephrase Definition (1.1) of circularity. If G is
two-connected its circularity is at least 6 and Proposition 2.1 gives

σ(G) = max {n | there is an admissible map f : V (G)→ A(n)}.(2.1)

Thus, circularity is a purely graph-theoretic invariant, and need not be formulated
in terms the underlying topology of a graph. For the rest of this paper we will
use the characterization (2.1) of circularity of two-connected graphs.

If G is a plane graph and f : V (G)→ A(n) is admissible, then a face Y ∈ F (G)
is said to be saturated if V (Y ) ∩ V (G(a)) 6= ∅ for every a ∈ Zn. The existence
of saturated faces in a plane graph is an important step towards our results on
circularity. Versions of the next proposition have been proved in [2] and [3].

Proposition 2.2. Suppose G is a two-connected plane graph, f : V (G) → A(n)
is admissible, and n ≥ 6. Then G has two saturated faces.

Proof. Let G and f be as stated in the hypothesis. By Theorem 5.4 of [4],
the set W = {E(W )|W ∈ F (G)} spans the cycle space C(G). In what follows
we construct a linear map d : C(G) → F2 having the property that a face Y is
saturated if d(E(Y )) = 1. The proposition will then be proved by showing that
d is nonzero on two elements of W.

Form the set Υ = E (G(0), (G(1)−G(0))∪G(2)) and define d as d(λ) = (λ,Υ).
In other words, d(λ) equals 0 or 1 depending on whether |λ ∩Υ| is even or odd.
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We claim that a face Y is saturated if d(E(Y )) = 1. To prove this, we suppose
Y is not saturated, and show d(E(Y )) = 0. Since Y is not saturated, there
is an a ∈ Zn for which V (Y ) ∩ V (G(a)) = ∅. Consider the subgraph A =
∂Y ∩ (G(a+ 1)∪G(a+ 2)∪ · · · ∪G(0)) of the cycle ∂Y , which by condition (a) of
Definition 1 has no edges in Υ. By construction, if e ∈ E(Y ) ∩ Υ, one endpoint
of e is in V (A), and by condition (a) of Definition 1 the other endpoint is not in
V (A). Moreover, the component of A with which e is incident must be a path
(since A is a proper subgraph of the cycle ∂Y ), and condition (a) implies that
this path joins e to another edge of E(Y ) ∩ Υ. It follows that E(Y ) ∩ Υ can
be partitioned into pairs of edges, each pair joined by a component of A. Thus
|E(Y ) ∩Υ| is even, so d(E(Y )) = 0.

To verify that d is nonzero, we construct a cycle on which d is 1. Take the
subgraphs H = G(0) ∪ G(1) ∪ G(2), J = G(2) ∪ G(3) ∪ G(4), and K = G(4) ∪
G(5)∪· · ·∪G(0) of G, which are connected by conditions (b) and (c) of Definition
1. Notice that E(J)∩Υ = ∅ = E(K)∩Υ, while Υ ⊆ E(H). Choose v, w ∈ V (H)
with v ∈ V (G(0)) and w ∈ V (G(2)), and let P be a v-w path in H. Now, P
necessarily contains edges in Υ; let Q be the shortest x-w subpath of P whose
first edge is in in Υ. Then x ∈ V (G(0)), w ∈ V (G(2)) and |E(Q) ∩Υ| = 1. Now
take y ∈ V (G(4)), let R be a w-y path in J , and let S be a y-x path in K. Since
(E(R) ∪ E(S)) ∩ Υ = ∅, it follows that the cycle QRS intersects Υ at a single
edge. Consequently d(E(QRS)) = 1, so d is nonzero.

Finally, to complete the proof we show there are two faces Y, Z ∈ F (G) for
which d(E(Y )) = 1 = d(E(Z)). Certainly, since W = {E(W )|W ∈ F (G)} spans
C(G) and d is nonzero, there must be some Y ∈ F (G) for which d(E(Y )) =
1. Now, any edge of G belongs to exactly two faces, so it follows that 0 =
∑

Z∈F (G)E(Z), or rather E(Y ) =
∑

Z∈F (G)−{Y }E(Z). Taking d of both sides,
1 =

∑

Z∈F (G)−{Y } d(E(Z)), so d(E(Z)) = 1 for some face Z 6= Y . This means
faces Y and Z are saturated.

3. Main Results

In this section G is assumed to be a two-connected plane graph. As mentioned
in the introduction, such a graph necessarily has circularity at least 6, and all
its faces are bounded by cycles. The following construction will be useful in our
proofs.

Given two faces Y and Z of G, a new plane graph GY Z is formed from G as
follows: Add two new vertices y and z inside the faces Y and Z respectively, so
V (GY Z) = V (G) ∪ {y, z}. Put E(GY Z) = E(G) ∪ {yx|x ∈ V (Y )} ∪ {zx|x ∈
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V (Z)}, and embed the new edges inside the faces Y and Z in such a way that no
edges cross. Then G is a subgraph of the plane graph GY Z .

We say two faces Y and Z of G are connected by n disjoint paths if there are
n paths in G, with pairwise disjoint vertex sets, each joining a vertex of Y to a
vertex of Z (we allow for the possibility that such a path consists only of a single
vertex, as may happen if Y and Z share a vertex). This is equivalent to saying
GY Z has n internally disjoint y-z paths.

The next two lemmas – relating admissible maps to disjoint paths joining faces
of G – are the primary technical results of this paper.

Lemma 3.1. Suppose f : V (G)→ A(n) is admissible, and Y and Z are saturated
faces of G. Then there are dn/2e disjoint paths joining Y to Z.

Proof. Let G, f , Y , and Z be as in the statement of the lemma, let k = dn/2e,
and let GY Z be as described above. The lemma will be proved if it can be shown
that removal of fewer than k vertices of G cannot disconnect the vertices y and z
of GY Z , for then Menger’s theorem (cf. Theorem 3.3.1 of [6]) asserts there are at
least k internally disjoint y-z paths in GY Z (and hence at least k = dn/2e disjoint
paths joining Y and Z).

Thus, let v1, · · · , vk−1 be k−1 vertices of G. We will produce a y-z path in GY Z
which misses all of these vertices. Define the set S = {a ∈ Zn|vi ∈ V (G(a)), 1 ≤
i ≤ k − 1}. By definition of G(a), a vertex vi ∈ {v1, · · · , vk−1} can belong to
at most two of the G(a), so S has cardinality no greater than 2(k − 1) < n.
Consequently, there is an element a0 ∈ Zn that is not in S. Since Y and Z are
saturated faces, there are vertices y0 ∈ V (Y ) and z0 ∈ V (Z) that are vertices of
G(a0). By condition (b) of Definition 1, there is a path P in G(a0) joining y0 to
z0. Since vi /∈ V (G(a0)) for 1 ≤ i ≤ k − 1, it follows that the path yy0 ∪ P ∪ z0z

joins y to z and misses every one of the vertices v1, · · · , vk−1.

Lemma 3.2. If there are n disjoint paths joining faces Y and Z of G, then there
is an admissible map f : V (G)→ A(2n).

Proof. Suppose there are n disjoint paths joining Y to Z, so there are n in-
ternally disjoint y-z paths in GY Z . Observe that the subgroup I = 〈2〉 =
{0, 2, 4, · · · , 2n− 2} of Z2n has exactly n elements, so we index our internally dis-
joint y-z paths P0, P2, P4, · · · , P2n−2 over this subgroup I of “even” elements of
Z2n. Moreover, we assume the indexing to be in clockwise order around the ver-
tex y, so that R2 −

⋃

a∈I Pa has n connected components R0, R2, R4, · · · , R2n−2,
with each Ra bounded by Pa ∪ Pa+2. Put R+

a = Pa ∪ Ra ⊆ R2, so any vertex of
G is in exactly one of the n sets R+

a , a ∈ I. (See Figure 2.)
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Figure 2

For each a ∈ I, let Ha be the subgraph of G induced by the vertices in R+
a ,

let Aa be the connected component of Ha which contains Pa −{y, z}, and let Ba
be the union (possibly empty) of the remaining components of Ha. Observe that
the sets {V (Aa), V (Ba)|a ∈ I} form a partition of V (G).

We define the function f : V (G)→ A(2n) as follows.

f(v) =
{

(a, a+ 1) if v ∈ V (Aa)
(a+ 2, a+ 3) if v ∈ V (Ba)

To finish the proof we show that f satisfies conditions (a), (b), and (c) in the
definition (1) of an admissible map.

Notice that f has been defined so that if a ∈ I, then f−1(T (a)) = f−1(a, a+1)
= f−1(T (a+ 1)). It follows that, if a ∈ I, then G(a) = G(a+ 1) and V (G(a)) =
V (G(a+ 1)) = f−1(a, a+ 1) = V (Aa) ∪ V (Ba−2).

If vw ∈ E(G), then v, w ∈ R+
a ∪ Pa+2 for some a ∈ I. It follows that v, w

∈ V (Ha) ∪ V (Aa+2) = V (Aa) ∪ V (Ba) ∪ V (Aa+2) ⊆ V (G(a)) ∪ V (G(a + 2))
= V (G(a+ 1)) ∪ V (G(a+ 2)). This verifies that f satisfies condition (a).

To verify condition (b), we must show that G(a) is connected for each a ∈ Zn.
Since G(a + 1) = G(a) for a ∈ I, we need only verify G(a) is connected when
a ∈ I. So let a ∈ I. Since V (G(a)) = V (Aa) ∪ V (Ba−2), and Aa is connected
by definition, it suffices to show that any component C of Ba−2 has a vertex
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adjacent to Aa. By connectivity of G, E(C,G − C) contains an edge vw. If
v ∈ V (C), then v ∈ Ra−2, and w ∈ R+

a−2∪Pa, so w ∈ V (Ha−2)∪V (Pa−{y, z}) =
V (Aa−2)∪V (Ba−2)∪V (Pa−{y, z}). It is impossible for w to be a vertex of Aa−2,
for otherwise C would be a part of Aa−2. Similarly, w /∈ V (Ba−2), for otherwise
w ∈ V (C), contrary to assumption. It follows that w ∈ V (Pa − {y, z}) ⊆ V (Aa).
Thus f satisfies condition (b).

Finally, to demonstrate that f satisfies condition (c), let a ∈ Zn. If a ∈ I then
any vertex v ∈ V (Pa) − {y, z} is in V (G(a)) = V (G(a) ∩ G(a + 1)). If a /∈ I,
then, by definition of f , the path P = ∂Y ∩ (R+

a−1 ∪ Pa+1) has the property that
f(V (P )) = {(a − 1, a), (a + 1, a + 2)}, so there is some vw ∈ E(P ) with f(v) =
(a − 1, a) and f(w) = (a + 1, a + 2). Consequently, vw ∈ E(G(a − 1), G(a + 1))
= E(G(a), G(a+1)). This verifies that f satisfies condition (c) and also completes
the proof of the lemma.

Given two faces Y and Z of G, let M(Y, Z) denote the maximum number of
disjoint paths in G joining Y to Z, or, what is the same, the maximum number of
internally disjoint y-z paths in GY Z . Let κ(Y, Z) be the least number of vertices
of G whose removal disconnects y and z, so M(Y, Z) = κ(Y, Z) by Menger’s
theorem. The next theorem expresses the circularity of a plane graph in terms of
the functions M or κ.

Theorem 3.3. If G is a two-connected plane graph, then σ(G) =
max{2M(Y, Z)|Y, Z ∈ F (G)} = max{2κ(Y, Z)|Y, Z ∈ F (G)}.

Proof. Any two faces Y and Z of G are joined by M(Y, Z) disjoint paths in G.
By Lemma 3.2, there is an admissible map f : V (G)→ A(2M(Y, Z)), so σ(G) ≥
2M(Y, Z). Hence σ(G) ≥ max{2M(Y, Z)|Y, Z ∈ F (G)}.

To establish the reverse inequality, choose an admissible map f : V (G) →
A(σ(G)). Now, σ(G) ≥ 6, so Proposition 2.2 guarantees that G has two satu-

rated faces Y0 and Z0. Using Lemma 3.1, σ(G) ≤ 2
⌈

σ(G)
2

⌉

≤ 2M(Y0, Z0) ≤

max{2M(Y, Z)|Y, Z ∈ F (G)}.

The next result has been known for some time (cf. Theorem 4.4 of [2]), but is
included here because it is an immediate corollary of the previous theorem.

Corollary 3.4. If G is a connected planar graph, then σ(G) is even.

Theorem 3.3 suggests an algorithm for computing the circularity of an arbitrary
two-connected plane graph G. According to this theorem, σ(G) is twice the
maximum of the numbers M(Y, Z), where Y and Z range over all pairs of distinct
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faces of a plane embedding of G. Now, the number M(Y, Z) equals the value of a
maximal flow in a certain network N associated to the graph GY Z ; for details, the
reader is referred to the proof of Theorem 5.9 of [5]. A maximal flow in N can be
computed using, say, the Edmonds-Karp max-flow min-cut algorithm (Algorithm
5.1 of [5]). It is proved in section 5.4 of [5] that the complexity of using this
method to find the flow is O(pq2), where G has p vertices and q edges.

The circularity of a two-connected plane graph G can thus be computed by
calculating 2M(Y, Z) for every pair Y, Z ∈ F (G) and selecting the largest value
thus obtained. Each computation of 2M(Y, Z) has complexity O(pq2), and if
G has r faces this computation must be made r(r − 1)/2 times. Using Euler’s
formula, r(r − 1)/2 < r2 = (q − p + 2)2 < q2, so the complexity of using this
method to compute σ(G) is O(pq4).
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