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CIRCULARITY OF PLANAR GRAPHS

RICHARD H. HAMMACK
Communicated by Klaus Kaiser

ABSTRACT. A circular cover of a graph G is a cover {Xg, -+ ,Xpn—1} of
the topological space G by closed connected subsets, indexed over Z,,, with
the following properties: Each element in the cover contains a vertex of G,
each vertex of G is contained in at most two elements of the cover, and
XaNXp # 0if and only if b —a € {—1,0,1}. The circularity of G is the
largest integer m for which there is a circular cover of G with n elements.
It is known that the circularity of a planar graph is even. We sharpen this
result by proving that the circularity of a plane graph is twice the maximum
number of disjoint paths joining two faces of G. This result leads to a
polynomial-time algorithm which computes the circularity of any connected
planar graph.

1. INTRODUCTION

A graph G is a finite vertex set V(G) together with an edge set F(G) composed
of two-element subsets of V(G). An edge {v,w} € E(G) is abbreviated vw (or
wv). In addition to this usual combinatorial interpretation, we regard a graph as
a topological space; its vertices are points in Euclidean space R", each edge vw is
a simple arc joining v to w, and edges intersect only at vertices. A circular cover
of a graph G is a finite cover { Xy, -+, X,_1} of the space G by closed connected
subsets, indexed over the cyclic group Z,, = Z/nZ, and satisfying the following
properties: Each X, contains at least one vertex of G, each vertex of G is in at
most two of the X,’s, and X, N X} # 0 if and only if b —a € {—1,0,1}. The
circularity of G is defined to be the integer

(1.1) 0(G) = max {n | G has a circular cover with n elements }.
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For example, Figure 1 displays a circular cover of Cy (the four-cycle) by 8 elements,
so o(C4) > 8. In fact, since any of the four vertices can be in at most 2 elements
of a circular cover, it follows that o(Cy) < 8. Hence o(Cy) = 8. Similarly
o(Cp) = 2p for any integer p > 3.

Xo X4
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X X3
X5 Xy
FIGURE 1

Very little is known about the circularity of arbitrary graphs. This paper ex-
plores the circularity of the class of planar graphs. Our main result (Theorem
3.3) is that the circularity of a two-connected planar graph is twice the maximum
number of disjoint paths joining two faces of a planar embedding. Further, we
describe how this leads to a polynomial-time algorithm which computes the cir-
cularity of such a graph. We begin with a survey of results from the literature.
The notion of an admissible map (introduced in [1]) is then reviewed in Section
2, and this is employed in the proof of our main result in Section 3.

The circularity of several classes of graphs is studied in [1]. It is proved there
that the circularity of the complete graphs K, and the complete bipartite graphs
K (p,q) is 6 when p > 3,q > 2 (Proposition 4.2 and Theorem 4.5). Furthermore, it
is shown (Theorem 5.4) that for p > 6 the circulant graph C,(1, 2) has circularity
p, so for any integer p > 6 there is a graph with circularity p. By Theorem 4.4
of [2], the circularity of a planar graph is even. This becomes a corollary of our
main result.

It is also proved in [2] that o(G) = 2 if and only if G is a tree, and o(G) > 6
if and only if G is a connected graph which contains a cycle (Theorem 2.2 and
Corollary 2.3). Moreover, it is proved (Theorem 3.6) that if G is connected then
o(G) = max{o(B;)|1 < i < k}, where {By,---, By} is the set of blocks of G.
Now, either a bock is isomorphic to K5 or it is two-connected. Since o(K3) = 2,
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the computation of the circularity of an arbitrary connected graph can thus be
reduced to computation of the circularity of two-connected graphs. Therefore, the
condition of two-connectivity in our main result does not restrict its generality.
Notice that since any two-connected graph is connected and contains a cycle, its
circularity is at least 6.

We adopt the lexicon and notation of [6]. A graph is planar if it can be
embedded in the Euclidean plane R?, and a planar graph with a fixed embedding
in R? is called a plane graph. A plane graph G is regarded as a subspace of R?;
its vertex set is a finite set of points in R?, and its edges are closed arcs joining
pairs of vertices. (However, if X is a subgraph of G, then G — X denotes the graph
obtained by removing from G all of X and the edges incident with it — not the
space G with the points X removed.) The connected components of R? — G are
called the faces of G, and the set of faces is denoted F(G). The topological closure
of aface Y is denoted Y, and the boundary of Y is Y = Y —Y, which is a subgraph
of G. If G is two-connected then 9Y is a cycle (cf. Proposition 4.2.5 of [6]). The
sets V(9Y') and E(JY) are abbreviated V(Y') and E(Y), respectively. If A and B
are disjoint subgraphs of G, then E(A, B) = {vw € E(G) |v € V(A),w € V(B)}.
The cardinality of a set S is denoted |S].

The edge space £(G) of G is the power set of E(G) endowed with the structure
of a vector space over the two-element field Fy. Addition is symmetric difference
of sets and zero is the empty set. There is a bilinear form (,) on £(G) defined by
declaring (a, 8) to be 0 or 1 depending on whether | N (3] is even or odd. The
cycle space C(G) of G is the subspace of £(G) spanned by the edge sets of the
cycles of G.

2. ADMISSIBLE MAPS

The idea of an admissible map, introduced in [1], puts the notion of a circular
cover into a combinatorial setting, thus simplifying our proofs. To motivate this
definition, observe that any circular cover X = {Xg,---,X,_1} of a graph G
induces a map f* : V(G) — Z, x Z,, defined by

fx(v) [ (a,a+1) ifveX,NXaqp
| (a,a) ifv¢ X, for a #b.

The fact that it comes from a circular cover gives f* a certain structure. We
next recall from [1] some notations that aid in formalizing this structure. This
notation will be employed throughout our paper.
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Let A(n) = {(a,b) € Z,, x Zy, | b—a € {0,1}}, and for each a € Z,, define
T(a) = {(a — 1,a),(a,a),(a,a+ 1)} C A(n). Given a map f : V(G) — A(n),
and a € Zy, let G(a) be the subgraph of G induced by the vertices f~(T(a)).
(If f = f%, then G(a) is the subgraph of G induced by the vertices in X,.) The
next definition characterizes those maps f* coming from circular covers.

Definition 1. A map f : V(G) — A(n) is said to be admissible if each of the
following conditions hold:

(a) If vw € E(G), then v,w € V(G(a)) UV (G(a + 1)) for some a € Z,,.

(b) If a € Z,, then G(a) is connected.

(c) If a € Z,, then either G(a) NG(a+1) # 0 or E(G(a),G(a+ 1)) # 0.

The connection between admissible maps and circular covers is given in the
next proposition, an immediate consequence of Theorem 2.5 of [1].

Proposition 2.1. Let n > 6. For each admissible map f : V(G) — A(n), there
s a circular cover of G by n elements. For each circular cover of G by n > 6
elements, there is an admissible map f : V(G) — A(n).

This proposition allows us to rephrase Definition (1.1) of circularity. If G is
two-connected its circularity is at least 6 and Proposition 2.1 gives

(2.1) o(G) = max {n | there is an admissible map f : V(G) — A(n)}.

Thus, circularity is a purely graph-theoretic invariant, and need not be formulated
in terms the underlying topology of a graph. For the rest of this paper we will
use the characterization (2.1) of circularity of two-connected graphs.

If G is a plane graph and f : V(G) — A(n) is admissible, then a face Y € F(G)
is said to be saturated if V(Y) NV (G(a)) # 0 for every a € Z,. The existence
of saturated faces in a plane graph is an important step towards our results on
circularity. Versions of the next proposition have been proved in [2] and [3].

Proposition 2.2. Suppose G is a two-connected plane graph, [ : V(G) — A(n)
is admissible, and n > 6. Then G has two saturated faces.

PROOF. Let G and f be as stated in the hypothesis. By Theorem 5.4 of [4],
the set W = {E(W)|W € F(G)} spans the cycle space C(G). In what follows
we construct a linear map d : C(G) — Fy having the property that a face Y is
saturated if d(E(Y)) = 1. The proposition will then be proved by showing that
d is nonzero on two elements of W.

Form the set T = E (G(0), (G(1) — G(0))UG(2)) and define d as d(\) = (A, Y).
In other words, d()) equals 0 or 1 depending on whether |A N Y| is even or odd.
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We claim that a face Y is saturated if d(E(Y")) = 1. To prove this, we suppose
Y is not saturated, and show d(E(Y)) = 0. Since Y is not saturated, there
is an a € Z, for which V(Y) N V(G(a)) = 0. Consider the subgraph A =
Y N(Gla+1)UG(a+2)U---UG(0)) of the cycle dY, which by condition (a) of
Definition 1 has no edges in Y. By construction, if e € E(Y) N Y, one endpoint
of e is in V(A), and by condition (a) of Definition 1 the other endpoint is not in
V(A). Moreover, the component of A with which e is incident must be a path
(since A is a proper subgraph of the cycle 9Y), and condition (a) implies that
this path joins e to another edge of E(Y) N Y. It follows that E(Y) N Y can
be partitioned into pairs of edges, each pair joined by a component of A. Thus
|[E(Y)N Y| is even, so d(E(Y)) = 0.

To verify that d is nonzero, we construct a cycle on which d is 1. Take the
subgraphs H = G(0) UG(1) UG(2), J = G(2)UGB)UG(4), and K = G(4) U
G(5)U---UG(0) of G, which are connected by conditions (b) and (c) of Definition
1. Notice that E(J)NYT =0 = E(K)NT, while Y C E(H). Choose v,w € V(H)
with v € V(G(0)) and w € V(G(2)), and let P be a v-w path in H. Now, P
necessarily contains edges in Y; let @ be the shortest z-w subpath of P whose
first edge is in in Y. Then € V(G(0)), w € V(G(2)) and |E(Q) N Y| = 1. Now
take y € V(G(4)), let R be a w-y path in J, and let S be a y-x path in K. Since
(E(R)UE(S))NT = 0, it follows that the cycle QRS intersects T at a single
edge. Consequently d(E(QRS)) = 1, so d is nonzero.

Finally, to complete the proof we show there are two faces Y, Z € F(G) for
which d(E(Y)) = 1 =d(E(Z)). Certainly, since W = {E(W)|W € F(G)} spans
C(G) and d is nonzero, there must be some Y € F(G) for which d(E(Y)) =
1. Now, any edge of G belongs to exactly two faces, so it follows that 0 =
> zere) E(Z), or rather E(Y) = 3 7 p(q)—(vy £(Z). Taking d of both sides,
1 =3 zere)—(vy AE(Z)), so d(E(Z)) =1 for some face Z # Y. This means
faces Y and Z are saturated. O

3. MAIN RESULTS

In this section G is assumed to be a two-connected plane graph. As mentioned
in the introduction, such a graph necessarily has circularity at least 6, and all
its faces are bounded by cycles. The following construction will be useful in our
proofs.

Given two faces Y and Z of G, a new plane graph Gy z is formed from G as
follows: Add two new vertices y and z inside the faces Y and Z respectively, so
V(Gyz) = V(G)U{y,z}. Put E(Gyz) = E(G) U {yz|x € V(Y)} U {zz|x €
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V(Z)}, and embed the new edges inside the faces Y and Z in such a way that no
edges cross. Then G is a subgraph of the plane graph Gy z.

We say two faces Y and Z of G are connected by n disjoint paths if there are
n paths in G, with pairwise disjoint vertex sets, each joining a vertex of Y to a
vertex of Z (we allow for the possibility that such a path consists only of a single
vertex, as may happen if Y and Z share a vertex). This is equivalent to saying
Gy z has n internally disjoint y-z paths.

The next two lemmas — relating admissible maps to disjoint paths joining faces
of G — are the primary technical results of this paper.

Lemma 3.1. Suppose f : V(G) — A(n) is admissible, andY and Z are saturated
faces of G. Then there are [n/2] disjoint paths joining Y to Z.

PRrROOF. Let G, f, Y, and Z be as in the statement of the lemma, let k = [n/2],
and let Gy z be as described above. The lemma will be proved if it can be shown
that removal of fewer than k vertices of G cannot disconnect the vertices y and z
of Gy z, for then Menger’s theorem (cf. Theorem 3.3.1 of [6]) asserts there are at
least k internally disjoint y-z paths in Gy z (and hence at least k = [n/2] disjoint
paths joining Y and 7).

Thus, let v1,- -+ ,vg_1 be k—1 vertices of G. We will produce a y-z path in Gy z
which misses all of these vertices. Define the set S = {a € Z,|v; € V(G(a)),1 <
i < k —1}. By definition of G(a), a vertex v; € {vy, - ,vk_1} can belong to
at most two of the G(a), so S has cardinality no greater than 2(k — 1) < n.
Consequently, there is an element ag € Z, that is not in S. Since Y and Z are
saturated faces, there are vertices yo € V(Y') and 2y € V(Z) that are vertices of
G(ap). By condition (b) of Definition 1, there is a path P in G(ap) joining yo to
z0. Since v; ¢ V(G(ap)) for 1 <i < k — 1, it follows that the path yyo U P U 29z
joins y to z and misses every one of the vertices vy, -+ ,vk_1. U

Lemma 3.2. If there are n disjoint paths joining faces Y and Z of G, then there
is an admissible map f : V(G) — A(2n).

PROOF. Suppose there are n disjoint paths joining Y to Z, so there are n in-
ternally disjoint y-z paths in Gyz. Observe that the subgroup I = (2) =
{0,2,4,--- ,2n— 2} of Zs, has exactly n elements, so we index our internally dis-
joint y-z paths Py, P, Py, -+ , Pop_o over this subgroup I of “even” elements of
Zoy. Moreover, we assume the indexing to be in clockwise order around the ver-
tex 7, so that R% — Uael P, has n connected components Ry, Ry, R4, -+ , Ropn_o,
with each R, bounded by P, U P,45. Put R} = P, U R, C R?, so any vertex of
G is in exactly one of the n sets R}, a € I. (See Figure 2.)
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FIGURE 2

For each a € I, let H, be the subgraph of G induced by the vertices in R,
let A, be the connected component of H, which contains P, — {y, 2z}, and let B,
be the union (possibly empty) of the remaining components of H,. Observe that
the sets {V(4,), V(Ba)|a € I} form a partition of V(G).

We define the function f : V(G) — A(2n) as follows.

f (a,a+1) if v e V(Aq)
f(v) —{ (a+2,a+3) ifveV(B,)

To finish the proof we show that f satisfies conditions (a), (b), and (c) in the
definition (1) of an admissible map.

Notice that f has been defined so that if a € I, then f~*(T(a)) = f~!(a,a+1)
= f~YT(a+1)). It follows that, if a € I, then G(a) = G(a + 1) and V(G(a)) =
V(Gla+1)) = f~Ha,a+1) = V(A,) UV (Bg_2).

If vw € E(G), then v,w € R} U P,12 for some a € I. It follows that v, w
€ V(Hy) UV (Aat2) = V(Al) UV(B,) UV (Agr2) C V(G(a)) UV(G(a+ 2))
=V(G(a+1)) UV (G(a+ 2)). This verifies that f satisfies condition (a).

To verify condition (b), we must show that G(a) is connected for each a € Z,,.
Since G(a + 1) = G(a) for a € I, we need only verify G(a) is connected when
a €I. Solet a € I. Since V(G(a)) = V(A,) UV (Bs—2), and A, is connected
by definition, it suffices to show that any component C' of B,_5 has a vertex
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adjacent to A,. By connectivity of G, E(C,G — C) contains an edge vw. If
v e V(C), thenv € Ry_g, and w € R} ,UP,,sow € V(Hy_2)UV (P, —{y,2}) =
V(Au—2)UV(Bu—2)UV (P, —{y, z}). It is impossible for w to be a vertex of A,_o,
for otherwise C' would be a part of A,_o. Similarly, w ¢ V(B,_2), for otherwise
w € V(C), contrary to assumption. It follows that w € V(P, — {y, 2}) C V(4,).
Thus f satisfies condition (b).

Finally, to demonstrate that f satisfies condition (c), let a € Z,,. If a € I then
any vertex v € V(B,) — {y,z} is in V(G(a)) = V(G(a) N G(a+1)). Ifa ¢ I,
then, by definition of f, the path P = dY N (R} _, U P,1) has the property that
f(V(P)) ={(a —1,a),(a+ 1,a + 2)}, so there is some vw € E(P) with f(v) =
(a —1,a) and f(w) = (a+ 1,a + 2). Consequently, vw € E(G(a —1),G(a + 1))
= E(G(a),G(a+1)). This verifies that f satisfies condition (c) and also completes
the proof of the lemma. d

Given two faces Y and Z of G, let M (Y, Z) denote the maximum number of
disjoint paths in G joining Y to Z, or, what is the same, the maximum number of
internally disjoint y-z paths in Gy z. Let (Y, Z) be the least number of vertices
of G whose removal disconnects y and z, so M(Y,Z) = k(Y,Z) by Menger’s
theorem. The next theorem expresses the circularity of a plane graph in terms of
the functions M or k.

Theorem 3.3. If G is a two-connected plane graph, then o(G) =
max{2M (Y, 2)|Y, Z € F(G)} = max{2k(Y, 2)|Y, Z € F(G)}.

PROOF. Any two faces Y and Z of G are joined by M(Y, Z) disjoint paths in G.
By Lemma 3.2, there is an admissible map f: V(G) — A(2M (Y, Z)), so o(G) >
2M (Y, Z). Hence o(G) > max{2M (Y, 2)|Y, Z € F(G)}.

To establish the reverse inequality, choose an admissible map f : V(G) —
A(o(G)). Now, o(G) > 6, so Proposition 2.2 guarantees that G has two satu-

G
rated faces Yy and Z;. Using Lemma 3.1, 0(G) < 2 [%W < 2M (Yo, Zy) <
max{2M (Y, Z)|Y, Z € F(G)}. O

The next result has been known for some time (cf. Theorem 4.4 of [2]), but is
included here because it is an immediate corollary of the previous theorem.

Corollary 3.4. If G is a connected planar graph, then o(G) is even.

Theorem 3.3 suggests an algorithm for computing the circularity of an arbitrary
two-connected plane graph G. According to this theorem, o(G) is twice the
maximum of the numbers M (Y, Z), where Y and Z range over all pairs of distinct
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faces of a plane embedding of G. Now, the number M (Y, Z) equals the value of a
maximal flow in a certain network N associated to the graph Gy z; for details, the
reader is referred to the proof of Theorem 5.9 of [5]. A maximal flow in N can be
computed using, say, the Edmonds-Karp max-flow min-cut algorithm (Algorithm
5.1 of [5]). It is proved in section 5.4 of [5] that the complexity of using this
method to find the flow is O(pg?), where G has p vertices and ¢ edges.

The circularity of a two-connected plane graph G can thus be computed by

calculating 2M (Y, Z) for every pair Y, Z € F(G) and selecting the largest value
thus obtained. Each computation of 2M (Y, Z) has complexity O(pg?), and if
G has r faces this computation must be made r(r — 1)/2 times. Using Euler’s
formula, r(r —1)/2 < r2 = (¢ — p + 2)? < ¢?, so the complexity of using this
method to compute o(G) is O(pg?).
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